References
- Al-Hawezy, S.M.N. 2013. The role of the different concentrations of GA3 on seed germination and seedling growth of loquat (Eriobotrya japonica L.). – IOSR Journal of Agriculture and Veterinary Science, 4(5), 3–6.
- Alonso-Ramírez, A., Rodríguez, D., Reyes, D., Jiménez, J.A., Nicolás, G., López-Climent, M., Gómez-Cadenas, A., Nicolás, C. 2009. Crosstalk between gibberellins and salicylic acid in early stress responses in Arabidopsis thaliana seeds. – Plant Signaling & Behavior, 4(8), 750–751.
https://doi.org/10.4161/psb.4.8.9175 . - Ameen, N.M., Al-Imam, A. 2007. Effect of soaking periods, gibberellic acid, and benzyladenine on pistachio seeds germination and subsequent seedling growth (Pistacia vera L.). – Mesopotamia Journal of Agriculture, 35(2), 2–8.
https://doi.org/10.33899/magrj.2007.26495 . - Babenko, L.M., Futorna, O.A., Romanenko, K.O., Smirnov, O.E., Rogalsky, S.P., Kosakivska, I.V., Skwarek, E., Wiśniewska, M. 2024. Exogenous N-hexanoyl-L-homoserine lactone mitigates acid rain stress effects through modulation of structural and functional changes in Triticum aestivum leaf. – Applied Soil Ecology, 193, 105151.
https://doi.org/10.1016/j.apsoil.2023.105151 . - Babenko, L.M., Romanenko, K.O., Iungin, O.S., Kosakovska, I.V. 2021. Acyl-homoserine lactones for crop production and stress tolerance of agricultural plants (review). – Sel'skokhozyaistvennaya Biologiya (Agricultural Biology), 56(1), 3–19.
https://doi.org/10.15389/AGROBIOLOGY.2021.1.3eng . - Bai, X., Todd, C.D., Desikan, R., Yang, Y., Hu, X. 2012. N-3-oxo-decanoyl-L-homoserine-lactone activates auxin-induced adventitious root formation via hydrogen peroxide- and nitric oxide-dependent cyclic GMP signaling in mung bean. – Plant Physiology, 158(2), 725–736.
https://doi.org/10.1104/pp.111.185769 . - Bewley, J.D., Black, M. 1994. Seeds: Physiology of Development and Germination. New York, Springer. 445 pp.
https://doi.org/10.1007/978-1-4899-1002-8 . - Bicalho, E.M., Pintó-Marijuan, M., Morales, M., Müller, M., Munné-Bosch, S., Garcia, Q.S. 2015. Control of macaw palm seed germination by the gibberellin/abscisic acid balance. – Plant Biology, 17(5), 990–996.
https://doi.org/10.1111/plb.12332 . - Cotrozzi, L., Pellegrini, E., Guidi, L., Landi, M., Lorenzini, G., Massai, R., Remorini, D., Tonelli, M., Trivellini, A., Vernieri, P., Vernieri, P., Nali, C. 2017. Losing the warning signal: drought compromises the cross-talk of signaling molecules in Quercus ilex exposed to ozone. – Frontiers in Plant Science, 8, 1020.
https://doi.org/10.3389/fpls.2017.01020 . - Echevarría-Machado, I., Escobedo-G.M., R.M., Larqué-Saavedra, A. 2007. Responses of transformed Catharanthus roseus roots to femtomolar concentrations of salicylic acid. – Plant Physiology and Biochemistry, 45(6–7), 501–507.
https://doi.org/10.1016/j.plaphy.2007.04.003 . - Emamverdian, A., Ding, Y., Mokhberdoran, F. 2020. The role of salicylic acid and gibberellin signaling in plant responses to abiotic stress with an emphasis on heavy metals. – Plant Signaling & Behavior, 15(7), e1777372.
https://doi.org/10.1080/15592324.2020.1777372 . - Fan, Z.Q., Tan, X.L., Shan, W., Kuang, J.F., Lu, W.J., Lin, H.T., Su, X.G., Lakshmanan, P., Zhao, M.L., Chen, J.Y. 2020. Involvement of BrNAC041 in ABA-GA antagonism in the leaf senescence of Chinese flowering cabbage. – Postharvest Biology and Technology, 168, 111254.
https://doi.org/10.1016/j.postharvbio.2020.111254 . - Fleishon, S., Shani, E., Ori, N., Weiss, D. 2011. Negative reciprocal interactions between gibberellin and cytokinin in tomato. – New Phytologist, 190(3), 609–617.
https://doi.org/10.1111/j.1469-8137.2010.03616.x . - Gantait, S., Sinniah, U.R., Ali, M.N., Sahu, N.C. 2015. Gibberellins – a multifaceted hormone in plant growth regulatory network. – Current Protein & Peptide Science, 16(5), 406–412.
https://doi.org/10.2174/1389203716666150330125439 . - Greenboim-Wainberg, Y., Maymon, I., Borochov, R., Alvarez, J., Olszewski, N., Ori, N., Eshed, Y., Weiss, D. 2005. Cross talk between gibberellin and cytokinin: the Arabidopsis GA response inhibitor SPINDLY plays a positive role in cytokinin signaling. – The Plant Cell, 17(1), 92–102.
https://doi.org/10.1105/tpc.104.028472 . - Grossnickle, S.C., Ivetić, V. 2017. Direct seeding in reforestation – a field performance review. – Reforesta, 4, 94–142.
https://doi.org/10.21750/REFOR.4.07.46 . - Guo, H., Wang, Y., Liu, H., Hu, P., Jia, Y., Zhang, C., Wang, Y., Gu, S., Yang, C., Wang, C. 2015. Exogenous GA3 application enhances xylem development and induces the expression of secondary wall biosynthesis related genes in Betula platyphylla. – International Journal of Molecular Sciences, 16(9), 22960–22975.
https://doi.org/10.3390/ijms160922960 . - Hu, Y., Zhi, L., Li, P., Hancock, J.T., Hu, X. 2022. The role of salicylic acid signal in plant growth, development and abiotic stress. – Phyton-International Journal of Experimental Botany, 91(12), 2591–2605.
https://doi.org/10.32604/PHYTON.2022.023733 . - Huang, S., Cerny, R.E., Qi, Y., Bhat, D., Aydt, C.M., Hanson, D.D., Malloy, K.P., Ness, L.A. 2003. Transgenic studies on the involvement of cytokinin and gibberellin in male development. – Plant Physiology, 131(3), 1270–1382.
https://doi.org/10.1104/pp.102.018598 . - Khan, N.A., Nazar, R., Iqbal, N., Anjum, N.A. 2012. Phytohormones and Abiotic Stress Tolerance in Plants. Berlin, Heidelberg, Springer. 308 pp.
https://doi.org/10.1007/978-3-642-25829-9 . - Kosakivska, I.V., Shcherbatiuk, M.M., Voytenko, L.V. 2020. Profiling of hormones in plant tissues: history, modern approaches, use in biotechnology. – Biotechnologia Acta, 13(4), 14–25.
https://doi.org/10.15407/biotech13.04.014 . - Kosakivska, I.V., Vedenicheva, N.P., Babenko, L.M., Voytenko, L.V., Romanenko, K.O., Vasyuk, V.A. 2022a. Exogenous phytohormones in the regulation of growth and development of cereals under abiotic stresses. – Molecular Biology Reports, 49, 617–628.
https://doi.org/10.1007/s11033-021-06802-2 . - Kosakivska, I.V., Vasyuk, V.A., Voytenko, L.V., Shcherbatiuk, M.M. 2022b. Effect of priming with gibberellic acid on acorn germination and growth of plants of Quercus robur and Q. rubra (Fagaceae). (Вплив праймування гібереловою кислотою на проростання жолудів та ріст рослин Quercus robur i Q. rubra (Fagaceae)). – Ukrainian Botanical Journal, 79(4), 254–266. (In Ukrainian with English summary).
https://doi.org/10.15407/ukrbotj79.04.254 . - Kosakivska, I.V., Vasyuk, V.A., Voytenko, L.V., Shcherbatiuk, M.M., Babenko, L.M., Romanenko, K.O. 2022c. Effects of exogenous bacterial quorum-sensing signal molecule/messenger N-hexanoyl-L-homoserine lactone (C6-HSL) on acorn germination and plant growth of Quercus robur and Q. rubra (Fagaceae). (Вплив екзогенної обробки водним розчином сигнальної молекули-медіатора бактеріального походження N-гексаноїл-L-гомосеринлактону (С6-ГГЛ) на проростання жолудів і ріст рослин Quercus robur i Q. rubra (Fagaceae)). – Ukrainian Botanical Journal, 79(5), 329–338. (In Ukrainian with English summary).
https://doi.org/10.15407/ukrbotj79.05.329 . - Kosakivska, I.V., Voytenko, L.V., Vasyuk, V.A., Shcherbatiuk, M.M. 2023. Morphological, physiological, and molecular components of the adaptive response to drought in the genus Quercus (Fagaceae). (Морфологічні, фізіологічні і молекулярні складові адаптаційної відповіді представників роду Quercus (Fagaceae) на посуху). – Ukrainian Botanical Journal, 80(3), 251–266. (In Ukrainian with English summary).
https://doi.org/10.15407/ukrbotj80.03.251 . - Kosakivska, I.V., Voytenko, L.V., Vasyuk, V.A., Vedenicheva, N.P., Babenko, L.M., Shcherbatyuk, M.M. 2019. Phytohormonal regulation of seed germination. (Фітогормональна регуляція проростання насіння). – Plant Physiology and Genetics / Fiziologiya rasteniy i genetski, 51(3), 187–206. (In Ukrainian with English summary).
https://doi.org/10.15407/frg2019.03.187 . - Kościelniak, P., Glazińska, P., Kęsy, J., Mucha, J., Zadworny, M. 2024. Identification of genetics and hormonal factors involved in Quercus robur root growth regulation in different cultivation system. – BMC Plant Biology, 24, 123.
https://doi.org/10.1186/s12870-024-04797-z . - Kou, E., Huang, X., Zhu, Y., Su, W., Liu, H., Sun, G., Chen, R., Hao, Y., Song, S. 2021. Crosstalk between auxin and gibberellin during stalk elongation in flowering Chinese cabbage. – Scientific Reports, 11, 3976.
https://doi.org/10.1038/s41598-021-83519-z . - Liu, F., Bian, Z., Jia, Z., Zhao, Q., Song, S. 2012. The GCR1 and GPA1 participate in promotion of Arabidopsis primary root elongation induced by N-acyl-homoserine lactones, the bacterial quorum-sensing signals. – Molecular Plant-Microbe Interactions, 25(5), 677–683.
https://doi.org/10.1094/MPMI-10-11-0274 . - Luk'yanets, V., Rumiantsev, M., Kobets, O., Tarnopilska, O., Musienko, S., Obolonyk, I., Bondarenko, V., Tarnopilskyi, P. 2022. Biometric characteristics and health state of English oak (Quercus robur L.) stands established using various stock types. – Agriculture & Forestry, 68(3), 119–132.
https://doi.org/10.17707/agricultforest.68.3.10 . - Mathesius, U., Mulders, S., Gao, M., Teplitski, M., Caetano-Anollés, G., Rolfe, B.G., Bauer, W.D. 2003. Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. – Proceedings of the National Academy of Sciences, 100(3), 1444–1449.
https://doi.org/10.1073/pnas.262672599 . - Moshynets, O.V., Babenko, L.M., Rogalsky, S.P., Iungin, O.S., Foster, J., Kosakivska, I.V., Potters, G., Spiers, A.J. 2019. Priming winter wheat seeds with the bacterial quorum sensing signal N-hexanoyl-L-homoserine lactone (C6-HSL) shows potential to improve plant growth and seed yield. – PLoS ONE, 14(2), e0209460.
https://doi.org/10.1371/journal.pone.0209460 . - Muhie, S.H. 2018. Seed priming with phytohormones to improve germination under dormant and abiotic stress conditions. – Advances in Crop Science and Technology, 6(6), 403.
https://doi.org/10.4172/2329-8863.1000403 . - Ortiz, J., Dias, N., Alvarado, R., Soto, J., Sanhueza, T., Rabert, C., Jorquera, M., Arriagada, C. 2024. N-acyl homoserine lactones (AHLs) type signal molecules produced by rhizobacteria associated with plants that growing in a metal(oids) contaminated soil: A catalyst for plant growth. – Microbiological Research, 281, 127606.
https://doi.org/10.1016/j.micres.2024.127606 . - Ortíz-Castro, R., Contreras-Cornejo, H.A., Macías-Rodríguez, L., López-Bucio, J. 2009. The role of microbial signals in plant growth and development. – Plant Signaling & Behavior, 4(8), 701–712.
https://doi.org/10.4161/psb.4.8.9047 . - Pasternak, T., Groot, E.P., Kazantsev, F.V., Teale, W., Omelyanchuk, N., Kovrizhnykh, V., Palme, K., Mironova, V.V. 2019. Salicylic acid affects root meristem patterning via auxin distribution in a concentration-dependent manner. – Plant Physiology, 180(3), 1725–1739.
https://doi.org/10.1104/pp.19.00130 . - Ross, J.J., O'Neill, D.P., Smith, J.J., Kerckhoffs, L.H.J., Elliott, R.C. 2000. Evidence that auxin promotes gibberellin A1 biosynthesis in pea. – The Plant Journal, 21(6), 547–552.
https://doi.org/10.1046/j.1365-313x.2000.00702.x . - Rout, S., Beura, S., Khare, N., Patra, S.S., Nayak, S. 2017. Effect of seed pre-treatment with different concentrations of gibberellic acid (GA3) on seed germination and seedling growth of Cassia fistula L. – Journal of Medicinal Plants Studies, 5(6), 135–138.
- Rout, S., Beura, S., Khare, N., Prusty, A.K. 2021. Role of different concentrations gibberellic acid (GA3) on seed germination and seedling quality of Saraca asoca (Roxb.) De Wilde. – Frontiers in Crop Improvement, 9(Special Issue–VI), 2495–2500.
- Schenk, S.T., Hernández-Reyes, C., Samans, B., Stein, E., Neumann, C., Schikora, M., Reichelt, M., Mithöfer, A., Becker, A., Kogel, K.-H., Schikora, A. 2014. N-acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. – The Plant Cell, 26(6), 2708–2723.
https://doi.org/10.1105/tpc.114.126763 . - Schikora, A., Schenk, S.T., Hartmann, A. 2016. Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group. – Plant Molecular Biology, 90, 605–612.
https://doi.org/10.1007/s11103-016-0457-8 . - Shrestha, A., Schikora, A. 2020. AHL-priming for enhanced resistance as a tool in sustainable agriculture. – FEMS Microbiology Ecology, 96(12), fiaa226.
https://doi.org/10.1093/femsec/fiaa226 . - Shu, K., Liu, X., Xie, Q., He, Z. 2016. Two faces of one seed: hormonal regulation of dormancy and germination. – Molecular Plant, 9(1), 34–45.
https://doi.org/10.1016/j.molp.2015.08.010 . - Singh, A., Roychoudhury, A. 2022. Mechanism of crosstalk between cytokinin and gibberellin. – Aftab, T. (ed.). Auxins, Cytokinins and Gibberellins Signaling in Plants. Signaling and Communication in Plants. Cham, Switzerland, Springer, 77–90.
https://doi.org/10.1007/978-3-031-05427-3_4 . - Song, J., Ga, E., Park, S., Lee, H., Yoon, I.S., Lee, S.B., Lee, J.-Y., Kim, B.-G. 2023. PROTEIN PHOSPHATASE 2C08, a negative regulator of abscisic acid signaling, promotes internode elongation in rice. – International Journal of Molecular Sciences, 24(13), 10821.
https://doi.org/10.3390/ijms241310821 . - Sponsel, V.M., Hedden, P. 2010. Gibberellin biosynthesis and inactivation. – Davies, P.J. (ed.). Plant Hormones. Dordrecht, Springer, 63–94.
https://doi.org/10.1007/978-1-4020-2686-7_4 . - Stacy, A.R., Diggle, S.P., Whiteley, M. 2012. Rules of engagement: defining bacterial communication. – Current Opinion in Microbiology, 15(2), 155–161.
https://doi.org/10.1016/j.mib.2011.11.007 . - Vedenicheva, N.P., Kosakivska, I.V. 2016. Modern aspects of cytokinins studies: evolution and crosstalk with other phytohormones. – Plant Physiology and Genetics / Fiziologiya rasteniy i genetski, 48(1), 3–19. (In Ukrainian with English summary).
https://doi.org/10.15407/frg2016.01.003 . - von Rad, U., Klein, I., Dobrev, P.I., Kottova, J., Zazimalova, E., Fekete, A., Hartmann, A., Schmitt-Kopplin, P., Durner, J. 2008. Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. – Planta, 229, 73–85.
https://doi.org/10.1007/s00425-008-0811-4 . - Wang, T., Li, C., Wu, Z., Jia, Y., Wang, H., Sun, S., Mao, C., Wang, X. 2017. Abscisic acid regulates auxin homeostasis in rice root tips to promote root hair elongation. – Frontiers in Plant Science, 8, 1121.
https://doi.org/10.3389/fpls.2017.01121 . - Yücedağ, S., Bilir, N., Özel, H.B. 2019. Phytohormone effect on seedling quality in Hungarian oak. – Forest Systems, 28(2), e005.
https://doi.org/10.5424/fs/2019282-14604 . - Zadworny, M., Jagodziński, A.M., Łakomy, P., Ufnalski, K., Oleksyn, J. 2014. The silent shareholder in deterioration of oak growth: common planting practices affect the long-term response of oaks to periodic drought. – Forest Ecology and Management, 318, 133–141.
https://doi.org/10.1016/j.foreco.2014.01.017 . - Zhang, J., Zhao, P., Chen, S., Sun, L., Mao, J., Tan, S., Xiang, C. 2023. The ABI3-ERF1 module mediates ABA-auxin crosstalk to regulate lateral root emergence. – Cell Reports, 42(7), 112809.
https://doi.org/10.1016/j.celrep.2023.112809 . - Zhao, F.Y., Cai, F.X., Gao, H.J., Zhang, S.Y., Wang, K., Liu, T., Wang, X. 2015. ABA plays essential roles in regulating root growth by interacting with auxin and MAPK signaling pathways and cell-cycle machinery in rice seedlings. – Plant Growth Regulation, 75, 535–547.
https://doi.org/10.1007/s10725-014-0017-7 .