Have a personal or library account? Click to login
Modelling of forest carbon dynamics in different forest management scenarios: A case study on poplar and black locust plantations in Hungary Cover

Modelling of forest carbon dynamics in different forest management scenarios: A case study on poplar and black locust plantations in Hungary

Open Access
|Dec 2024

References

  1. Ábri, T., Keserű, Z., Borovics, A., Rédei, K., Csajbók, J. 2022. Comparison of juvenile, drought tolerant black locust (Robinia pseudoacacia L.) clones with regard to plant physiology and growth characteristics in Eastern Hungary: Early evaluation. – Forests, 13(2), 292. https://doi.org/10.3390/f13020292.
  2. Ajit, Dhyani, S.K., Ramnewaj, Handa, A.K., Prasad, R., Alam, B., Rizvi, R.H., Gupta, G., Pandey, K.K., Jain, A., Uma. 2013. Modeling analysis of potential carbon sequestration under existing agroforestry systems in three districts of Indo-gangetic plains in India. – Agroforestry Systems, 87, 1129–1146. https://doi.org/10.1007/s10457-013-9625-x.
  3. Al Afas, N., Marron, N., Van Dongen, S., Laureysens, I., Ceulemans, R. 2008. Dynamics of biomass production in a poplar coppice culture over three rotations (11 years). – Forest Ecology and Management, 255(5–6), 1883–1891. https://doi.org/10.1016/j.foreco.2007.12.010.
  4. Almulqu, A.A. 2017. Dynamic growth model simulation for carbon stock management in dry forest. – Biosystems Diversity, 25(3), 249–254. https://doi.org/10.15421/011738.
  5. Amaducci, S., Facciotto, G., Bergante, S., Perego, A., Serra, P., Ferrarini, A., Chimento, C. 2017. Biomass production and energy balance of herbaceous and woody crops on marginal soils in the Po Valley. – Global Change Biology Bioenergy, 9(1), 31–45. https://doi.org/10.1111/gcbb.12341.
  6. de Jong, B.H., Masera, O., Olguín, M., Martínez, R. 2007. Greenhouse gas mitigation potential of combining forest management and bioenergy substitution: A case study from Central Highlands of Michoacan, Mexico. – Forest Ecology and Management, 242(2–3), 398–411. https://doi.org/10.1016/j.foreco.2007.01.057.
  7. FAO. 2020. Global Forest Resources Assessment 2020 Report, Hungary. Rome, Italy, FAO. 57 pp.
  8. International Energy Agency (IEA). 2022. Hungary 2022. Energy Policy Review. Paris, France, IEA Publications. 173 pp.
  9. Jia, Y.-L., Li, Q.-R., Xu, Z.-Q., Sang, W.-G. 2016. Carbon cycle of larch plantation based on CO2FIX model. – Chinese Journal of Plant Ecology, 40(4), 405–415. https://doi.org/10.17521/cjpe.2015.0208.
  10. Jiao, W., Wang, W., Peng, C., Lei, X., Ruan, H., Li, H., Yang, Y., Grabarnik, P., Shanin, V. 2022. Improving a process-based model to simulate forest carbon allocation under varied stand density. – Forests, 13(8), 1212. https://doi.org/10.3390/f13081212.
  11. Kaonga, M.L., Bayliss-Smith, T.P. 2012. Simulation of carbon pool changes in woodlots in eastern Zambia using the CO2FIX model. – Agroforestry Systems, 86, 213–223. https://doi.org/10.1007/s10457-011-9429-9.
  12. Király, É., Börcsök, Z., Kocsis, Z., Németh, G., Polgár, A., Borovics, A. 2022. Carbon sequestration in harvested wood products in Hungary an estimation based on the IPCC 2019 refinement. – Forests, 13(11), 1809. https://doi.org/10.3390/f13111809.
  13. Klašnja, B., Orlović, S., Galić, Z. 2013. Comparison of different wood species as raw materials for bioenergy. – South-East European Forestry, 4(2), 81–88. https://doi.org/10.15177/seefor.13-08.
  14. Lemma, B., Kleja, D.B., Olsson, M., Nilsson, I. 2007. Factors controlling soil organic carbon sequestration under exotic tree plantations: A case study using the CO2Fix model in southwestern Ethiopia. – Forest Ecology and Management, 252(1–3), 124–131. https://doi.org/10.1016/j.foreco.2007.06.029.
  15. Li, T., Liu, G. 2014. Age-related changes of carbon accumulation and allocation in plants and soil of black locust forest on Loess Plateau in Ansai County, Shaanxi Province of China. – Chinese Geographical Science, 24(4), 414–422. https://doi.org/10.1007/s11769-014-0704-3.
  16. Ma, X., Wu, L., Zhu, Y., Wu, J., Qin, Y. 2022. Simulation of vegetation carbon sink of arbor forest and carbon mitigation of forestry bioenergy in China. – International Journal of Environmental Research and Public Health, 19(20), 13507. https://doi.org/10.3390/ijerph192013507.
  17. Mao, Z., Derrien, D., Didion, M., Liski, J., Eglin, T., Nicolas, M., Jonard, M., Saint-André, L. 2019. Modeling soil organic carbon dynamics in temperate forests with Yasso07. – Biogeosciences, 16(9), 1955–1973. https://doi.org/10.5194/bg-16-1955-2019.
  18. Marosvölgyi, B., Vityi, A. 2019. Use of fast growing tree species in a crop rotation. (Gyorsannövő fafajok használata vetésforgóban). Factsheet No. 35. Lugo, Spain, AFINET (Agroforestry Innovation Networks). 2 pp. (In Hungarian and English).
  19. Matyka, M., Radzikowski, P. 2020. Productivity and biometric characteristics of 11 varieties of willow cultivated on marginal soil. – Agriculture, 10(12), 616. https://doi.org/10.3390/agriculture10120616.
  20. Ministry for Innovation and Technology. 2021. National Clean Development Strategy 2020 – 2050. Budapest, Hungary, Ministry for Innovation and Technology. 119 pp.
  21. Mulyana, B., Polgár, A., Vityi, A. 2023a. Research trends in the environmental assessment of poplar plantations in Hungary: A bibliometric analysis. – Ecocycles, 9(3), 23–32. https://doi.org/10.19040/ecocycles.v9i3.339.
  22. Mulyana, B., Polgár, A., Vityi, A., 2023b. Three decades of forest carbon dynamics modeling using CO2FIX: A bibliometric analysis. – EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 10(4), 2105–2119.
  23. Mulyana, B., Soeprijadi, D., Purwanto, R.H. 2020a. Development of bioenergy plantation in Indonesia: yield regulation and above-ground carbon storage in gliricidia (Gliricidia sepium) plantation. – E3S Web of Conferences, 202, 08009.
  24. Mulyana, B., Soeprijadi, D., Purwanto, R.H. 2020b. Allometric model of wood biomass and carbon for gliricidia (Gliricidia sepium (Jacq.) Kunth ex Walp.) at bioenergy plantation in Indonesia. – Forestry Ideas, 26(1(59)), 153–164.
  25. Nabuurs, G.J., Mohren, G.M.J. 1995. Modelling analysis of potential carbon sequestration in selected forest types. – Canadian Journal of Forest Research, 25(7), 1157–1172. https://doi.org/10.1139/x95-128.
  26. Nabuurs, G.J., Schelhaas, M.J. 2002. Carbon profiles of typical forest types across Europe assessed with CO2FIX. – Ecological Indicators, 1(3), 213–223. https://doi.org/10.1016/S1470-160X(02)00007-9.
  27. National Food Chain Safety Office. 2013. Forest resources and forest management in Hungary 2012. Budapest, National Food Chain Safety Office. 4 pp.
  28. National Food Chain Safety Office. 2016. Forest resources and forest management in Hungary 2015. Budapest, National Food Chain Safety Office. 2 pp.
  29. Negash, M., Kanninen, M. 2015. Modeling biomass and soil carbon sequestration of indigenous agroforestry systems using CO2FIX approach. – Agriculture, Ecosystems & Environment, 203, 147–155. https://doi.org/10.1016/j.agee.2015.02.004.
  30. Németh, R., Fehér, S., Komán, S. 2018. Utilization of fast growing plantation timber as bioenergy in Hungary. – IOP Conference Series: Earth and Environmental Science, 159, 012029. https://doi.org/10.1088/1755-1315/159/1/012029.
  31. Nicolescu, V.-N., Hernea, C., Bakti, B., Keserű, Z., Antal, B., Rédei, K. 2018. Black locust (Robinia pseudoacacia L.) as a multi-purpose tree species in Hungary and Romania: a review. – Journal of Forestry Research, 29, 1449–1463. https://doi.org/10.1007/s11676-018-0626-5.
  32. Nicolescu, V.-N., Rédei, K., Mason, W.L., Vor, T., Pöetzelsberger, E., Bastien, J.-C., Brus, R., Benčať, T., Đodan, M., Cvjetkovic, B., Andrašev, S., La Porta, N., Lavnyy, V., Mandžukovski, D., Petkova, K., Roženbergar, D., Wąsik, R., Mohren, G.M.J., Monteverdi, M.C., Musch, B., Klisz, M., Perić, S., Keça, L., Bartlett, D., Hernea, C., Pástor, M. 2020. Ecology, growth and management of black locust (Robinia pseudoacacia L.), a non-native species integrated into European forests. – Journal of Forestry Research, 31, 1081–1101. https://doi.org/10.1007/s11676-020-01116-8.
  33. Országos Meteorológiai Szolgálat. 2021. Climate of Hungary – general characteristics. [WWW Document]. – URL https://www.met.hu/en/eghajlat/magyarorszag_eghajlata/altalanos_eghajlati_jellemzes/altalanos_leiras/. [Accessed 12 September 2021].
  34. Prada, M., Bravo, F., Berdasco, L., Canga, E., Martínez-Alonso, C. 2016. Carbon sequestration for different management alternatives in sweet chestnut coppice in northern Spain. – Journal of Cleaner Production, 135, 1161–1169. https://doi.org/10.1016/j.jclepro.2016.07.041.
  35. Quinkenstein, A., Jochheim, H. 2016. Assessing the carbon sequestration potential of poplar and black locust short rotation coppices on mine reclamation sites in Eastern Germany – Model development and application. – Journal of Environmental Management, 168, 53–66. https://doi.org/10.1016/j.jenvman.2015.11.044.
  36. Radzikowski, P., Matyka, M., Berbeć, A.K. 2020. Biodiversity of weeds and arthropods in five different perennial industrial crops in eastern Poland. – Agriculture, 10(12), 636. https://doi.org/10.3390/agriculture10120636.
  37. Rédei, K., Csiha, I., Keserű, Z. 2011. Black locust (Robinia pseudoacacia L.) short-rotation crops under marginal site conditions. – Acta Silvatica et Lignaria Hungarica, 7(1), 125–131. https://doi.org/10.37045/aslh-2011-0010.
  38. Rédei, K., Csiha, I., Keserű, Z., Rásó, J., Kamandiné Végh, Á., Antal, B. 2014. Growth and yield of black locust (Robinia pseudoacacia L.) stands in Nyírség growing region (North-East Hungary). – South-East European Forestry, 5(1), 13–22. https://doi.org/10.15177/seefor.14-04.
  39. Rédei, K., Gál, J., Keserű, Z., Antal, B. 2017a. Above-ground biomass of black locust (Robinia pseudoacacia L.) trees and stands. – Acta Silvatica et Lignaria Hungarica, 13(2), 113–124. https://doi.org/10.1515/aslh-2017-0008.
  40. Rédei, K., Csiha, I., Rásó, J., Keserű, Z. 2017b. Selection of promising black locust (Robinia pseudoacacia L.) cultivars in Hungary. – Journal of Forest Science, 63(8), 339–343. https://doi.org/10.17221/23/2017-JFS.
  41. Rédei, K., Keserű, Z., Rásó, J., 2012. Practice-oriented yield table for white poplar stands growing under sandy soil conditions in Hungary. – South-East European Forestry, 3(1), 33–40. https://doi.org/10.15177/seefor.12-04.
  42. Schelhaas, M.J., van Esch, P.W., Groen, T.A., de Jong, B.H.J., Kanninen, M., Liski, J., Masera, O., Mohren, G.M.J., Nabuurs, G.J., Palosuo, T., Pedroni, L., Vallejo, A., Vilén, T. 2004a. CO2FIX V 3.1 - Manual. Wageningen, The Netherlands, Alterra. 49 pp.
  43. Schelhaas, M.J., van Esch, P.W., Groen, T.A., de Jong, B.H.J., Kanninen, M., Liski, J., Masera, O., Mohren, G.M.J., Nabuurs, G.J., Palosuo, T., Pedroni, L., Vallejo, A., Vilén, T. 2004b. CO2FIX V 3.1 - A modelling framework for quantifying carbon sequestration in forest ecosystem. ALTERRA-rapport 1068. Wageningen, The Netherlands, Alterra. 122 pp.
  44. Schiberna, E., Borovics, A., Benke, A. 2021. Economic modelling of poplar short rotation coppice plantations in Hungary. – Forests, 12(5), 623. https://doi.org/10.3390/f12050623.
  45. Stolpe, N.B., Dubé, F., Zagal, E. 2010. Calibration of CO2FIX to native forest, pine plantation, and pasture on a volcanic soil of the Chilean Patagonia. – Acta Agriculturae Scandinavica, Section B – Soil & Plant Science, 60(3), 235–244. https://doi.org/10.1080/09064710902865722.
  46. Truax, B., Fortier, J., Gagnon, D., Lambert, F. 2018. Planting density and site effects on stem dimensions, stand productivity, biomass partitioning, carbon stocks and soil nutrient supply in hybrid poplar plantations. – Forests, 9(6), 293. https://doi.org/10.3390/f9060293.
  47. Vítková, M., Müllerová, J., Sádlo, J., Pergl, J., Pyšek, P. 2017. Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. – Forest Ecology and Management, 384, 287–302. https://doi.org/10.1016/j.foreco.2016.10.057.
  48. Zbieć, M., Franc-Dąbrowska, J., Drejerska, N. 2022. Wood waste management in Europe through the lens of the circular bioeconomy. – Energies, 15(12), 4352. https://doi.org/10.3390/en15124352.
  49. Zhang, L., Sun, Y., Song, T., Xu, J. 2019. Harvested wood products as a carbon sink in China, 1900–2016. – International Journal of Environmental Research and Public Health, 16(3), 445. https://doi.org/10.3390/ijerph16030445.
  50. Zhang, X., Yang, H., Chen, J. 2018. Life-cycle carbon budget of China’s harvested wood products in 1900–2015. – Forest Policy and Economics, 92, 181–192. https://doi.org/10.1016/j.forpol.2018.05.005.
DOI: https://doi.org/10.2478/fsmu-2024-0005 | Journal eISSN: 1736-8723 | Journal ISSN: 1406-9954
Language: English
Page range: 77 - 89
Published on: Dec 31, 2024
Published by: Estonian University of Life Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Budi Mulyana, András Polgár, Andrea Vityi, published by Estonian University of Life Sciences
This work is licensed under the Creative Commons Attribution 4.0 License.