References
- Arold, I. 2005. Estonian Landscapes. (Eesti maastikud). Tartu, Tartu Ülikooli Kirjastus. 453 pp.
- Brunt, K.M., Neumann, T.A., Smith, B.E. 2019. Assessment of ICESat-2 ice sheet surface heights, based on comparisons over the interior of the Antarctic ice sheet. – Geophysical Research Letters, 46(22), 13072–13078.
https://doi.org/10.1029/2019GL084886 . - Burns, R.M., Honkala, B.H. 1990. Silvics of North America. Volume 1. Conifers. Agriculture Handbook 654. Washington, DC, United States Department of Agriculture, Forest Service. 675 pp.
- Ellmann, A., Märdla, S., Oja, T. 2019. The 5 mm geoid model for Estonia computed by the least squares modified Stokes’s formula. – Survey Review, 52(373), 352–372.
https://doi.org/10.1080/00396265.2019.1583848 . - Feng, T., Duncanson, L., Montesano, P., Hancock, S., Minor, D., Guenther, E., Neuenschwander, A. 2023. A systematic evaluation of multi-resolution ICESat-2 ATL08 terrain and canopy heights in boreal forests. – Remote Sensing of Environment, 291, 113570.
https://doi.org/10.1016/j.rse.2023.113570 . - Forest Act. 2023. Metsaseadus. – RT I, 22.09.2023, 3. (In Estonian).
- Fransson, P., Brännström, Å., Franklin, O. 2021. A tree’s quest for light – optimal height and diameter growth under a shading canopy. – Tree Physiology, 41(1), 1–11.
https://doi.org/10.1093/treephys/tpaa110 . - Gustafsson, L., Baker, S.C., Bauhus, J., Beese, W.J., Brodie, A., Kouki, J., Lindenmayer, D.B., Lõhmus, A., Martínez Pastur, G., Messier, C., Neyland, M., Palik, B., Sverdrup-Thygeson, A., Volney, J., Wayne, A., Franklin, J.F. 2012. Retention forestry to maintain multifunctional forests: a world perspective. – BioScience, 62(7), 633−645.
https://doi.org/10.1525/bio.2012.62.7.6 . - Jennings, S.B., Brown, N.D., Sheil, D. 1999. Assessing forest canopies and understorey illumination: canopy closure, canopy cover and other measures. – Forestry, 72(1), 59–74.
https://doi.org/10.1093/forestry/72.1.59 . - Kmoch, A., Kanal, A., Astover, A., Kull, A., Virro, H., Helm, A., Pärtel, M., Ostonen, I., Uuemaa, E. 2021. EstSoil-EH: a high-resolution ecohydrological modelling parameters dataset for Estonia. – Earth System Science Data, 13(1), 83–97,
https://doi.org/10.5194/essd-13-83-2021 . - Kõlli, R., Asi, E., Köster, T. 2004. Organic carbon pools in Estonian forest soils. – Baltic Forestry, 10(1), 19–26.
- Krigul, T. 1972. Forest Mensuration. (Metsatakseerimine). Tallinn, Valgus. 359 pp. (In Estonian).
- Lang, M. 2010. Estimation of crown and canopy cover from airborne lidar data. – Forestry Studies / Metsanduslikud Uurimused, 52, 5–17.
- Lefsky, M.A. 2010. A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System. – Geophysical Research Letters, 37(15), L15401.
https://doi.org/10.1029/2010GL043622 . - Lindh, M., Falster, D.S., Zhang, L., Dieckmann, U., Brännström, Å. 2018. Latitudinal effects on crown shape evolution. – Ecology and Evolution, 8(16), 8149–8158.
https://doi.org/10.1002/ece3.4275 . - Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B., Farrell, S., Fricker, H., Gardner, A., Harding, D., Jasinski, M., Kwok, R., Magruder, L., Lubin, D., Luthcke, S., Morison, J., Nelson, R., Neuenschwander, A., Palm, S., Popescu, S., Shum, C.K., Schutz, B.E., Smith, B., Yang, Y., Zwally, J. 2017. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. – Remote Sensing of Environment, 190, 260–273.
https://doi.org/10.1016/j.rse.2016.12.029 . - McGaughey, R.J. 2020. FUSION/LDV: Software for LIDAR Data Analysis and Visualization, FUSION Version 4.10. Seattle, WA, United States Department of Agriculture (USDA), Forest Service, Pacific Northwest Research Station. 212 pp.
- Moudrý, V., Gdulová, K., Gábor, L., Šárovcová, E., Barták, V., Leroy, F., Špatenková, O., Rocchini, D., Prošek, J. 2022. Effects of environmental conditions on ICESat-2 terrain and canopy heights retrievals in Central European mountains. – Remote Sensing of Environment, 279, 113112.
https://doi.org/10.1016/j.rse.2022.113112 . - Næsset, E., Gobakken, T., Holmgren, J., Hyyppä, H., Hyyppä, J., Maltamo, M., Nilsson, M., Olsson, H., Persson, Å., Söderman, U. 2004. Laser scanning of forest resources: the Nordic experience. – Scandinavian Journal of Forest Research, 19(6), 482–499.
- Neuenschwander, A., Pitts, K. 2019. The ATL08 land and vegetation product for the ICESat-2 Mission. – Remote Sensing of Environment, 221, 247–259.
https://doi.org/10.1016/j.rse.2018.11.005 . - Neuenschwander, A., Pitts, K., Jelley, B., Robbins, J., Markel, J., Popescu, S., Nelson, R., Harding, D., Pederson, D., Klotz, B., Sheridan, R. 2022. Ice, Cloud, and Land Elevation Satellite (ICESat-2) Project Algorithm Theoretical Basis Document (ATBD) for Land - Vegetation Along-Track Products (ATL08), Version 6. ICESat-2 Project. 148 pp.
https://icesat-2.gsfc.nasa.gov/sites/default/files/page_files/ICESat2_ATL08_ATBD_r006.pdf . - Neumann, T.A., Martino, A.J., Markus, T., Bae, S., Bock, M.R., Brenner, A.C., Brunt, K.M., Cavanaugh, J., Fernandes, S.T., Hancock, D.W., Harbeck, K., Lee, J., Kurtz, N.T., Luers, P.J., Luthcke, S.B., Magruder, L., Pennington, T.A, Ramos-Izquierdo, L., Rebold, T., Skoog, J., Thomas, T.C. 2019. The Ice, Cloud, and Land Elevation Satellite-2 mission: A global geolocated photon product derived from the Advanced Topographic Laser Altimeter System. – Remote Sensing of Environment, 233, 111325.
https://doi.org/10.1016/j.rse.2019.111325 . - Ohlson, M., Økland, R.H., Nordbakken, J.-F., Dahlberg, B. 2001. Fatal interactions between Scots pine and Sphagnum mosses in bog ecosystems. – Oikos, 94(3), 425–432.
https://doi.org/10.1034/j.1600-0706.2001.940305.x . - Olesk, A., Praks, J., Antropov, O., Zalite, K., Arumäe, T., Voormansik, K. 2016. Interferometric SAR coherence models for characterization of hemiboreal forests using TanDEM-X data. – Remote Sensing, 8(9), 700.
https://doi.org/10.3390/rs8090700 . - Popescu, S.C., Zhou, T., Nelson, R., Neuenschwander, A., Sheridan, R., Narine, L., Walsh, K.M. 2018. Photon counting LiDAR: An adaptive ground and canopy height retrieval algorithm for ICESat-2 data. – Remote Sensing of Environment, 208, 154–170.
https://doi.org/10.1016/j.rse.2018.02.019 . - R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [WWW document]. – URL
https://www.R-project.org/ . [Accessed 22 February 2024]. - Raudsaar, M., Tamm, U., Pärt, E., Timmusk, T. 2023. Environment. – Sirkas, F., Valgepea, M. (eds.). Yearbook Forest 2021. Tallinn, Keskkonnaagentuur, 240–252.
- Simard, M., Pinto, N., Fisher, J.B., Baccini, A. 2011. Mapping forest canopy height globally with spaceborne lidar. – Journal of Geophysical Research, 116, G04021.
https://doi.org/10.1029/2011JG001708 . - Spurr, S.H. 1948. Aerial Photographs in Forestry. New York, Ronald Press Company. 340 pp.
- Stereńczak, K., Mielcarek, M., Wertz, B., Bronisz, K., Zajączkowski, G., Jagodziński, A.M., Ochał, W., Skorupski, M., 2019. Factors influencing the accuracy of ground-based tree-height measurements for major European tree species. – Journal of Environmental Management, 231, 1284–1292.
https://doi.org/10.1016/j.jenvman.2018.09.100 . - Tappo, E. 1982. Mean characteristics of forest stands in Estonia by dominant species, site fertility, and age. (Eesti NSV puistute keskmised takseertunnused puistu enamuspuuliigi, boniteedi ja vanuse järgi). Tallinn, Eesti NSV Põllumajandusministeeriumi Informatsiooni ja Juurutamise Valitsus. 72 pp. (In Estonian.)
- Tarmu, T., Laarmann, D., Kiviste, A. 2020. Mean height or dominant height – what to prefer for modelling the site index of Estonian forests? – Forestry Studies / Metsanduslikud Uurimused, 72, 121–138.
- Valgepea, M., Sirkas, F., Timmusk, T., Pärt, E., Suursild, E., Matson, T. 2023. Forest resources. – Sirkas, F., Valgepea, M. (eds.). Yearbook Forest 2021. Tallinn, Keskkonnaagentuur, 17–96.
- Vaus, M. 2005. Forest Mensuration. (Metsatakseerimine). Tartu, OÜ Halo Kirjastus. 178 pp. (In Estonian).