Have a personal or library account? Click to login
Comparative testing of two alternating current methods for determining wood moisture content in kiln conditions Cover

Comparative testing of two alternating current methods for determining wood moisture content in kiln conditions

Open Access
|Dec 2021

References

  1. ASTM D4444-08. 2008. Standard Test Method for Laboratory Standardization and Calibration of Hand-Held Moisture Meters. Annual Book of ASTM Standards, West Conshohocken, PA, ASTM International. 10 pp.
  2. BES Bollmann Drying and Control Systems. [WWW document]. – URL https://www.bes-bollmann.com/. [Accessed 3 March 2021].
  3. Brookhuis Micro-Electronics BV. 2009. Moisture measuring manual Version 1.4. 27 pp.
  4. Brookhuis. [WWW document]. – URL https://brookhuis.com. [Accessed 3 March 2021].
  5. Casans Berga, S., Garcia-Gil, R., Navarro Anton, A.E., Rosado-Muñoz, A. 2019. Novel wood resistance measurement method reducing the initial transient instabilities arising in DC methods due to polarization effects. – Electronics, 8(11), 1253. https://www.mdpi.com/2079-9292/8/11/1253/htm.
  6. Feutron Klimasimulation GmbH. [WWW document]. – URL https://www.feutron.de/en/weathering-chamber/. [Accessed 13 April 2021].
  7. Gann Mess- und Regeltechnik GmbH. [WWW document]. – URL http://www.gann.de. [Accessed 13 April 2021].
  8. ISO 3130:1975. 1975. Wood – Determination of moisture content for physical and mechanical tests. Geneva, Switzerland International Organization for Standardization. 2 pp.
  9. ISO 3534-1:1993. 1993. Statistics – vocabulary and symbols – part 1: probability and general statistical terms. Geneva, International Organization of Standardization. 53 pp.
  10. James, W.L., Yen, Y.-H., King, R.J. 1985. A microwave method for measuring moisture content, density and grain angle of wood. United States Department of Agriculture. [WWW document]. – URL http://www.treesearch.fs.fed.us/pubs/5792. [Accessed 13 May 2021].
  11. Johansson, J., Hagman, O., Oja, J. 2003. Predicting moisture content and density of Scots pine by microwave scanning of sawn timber. – Computers and Electronics in Agriculture, 41(1–3), 85 – 90. https://doi.org/10.1016/S0168-1699(03)00044-9.
  12. Keithley. 2004. Low Level Measurements Handbook 6th Edition, 239 pp. [WWW document]. – URL http://web.mit.edu/8.13/8.13d/manuals/LowLevMsHandbk.pdf. [Accessed 3 March 2020].
  13. Kiviste, A. 1999. Matemaatiline Statistika MS Excel Keskkonnas (Mathematical Statistics in MS Excel Environments). Tallinn, GT Tarkvara OÜ. 86 pp. (In Estonian)
  14. Krause, S. 2003. Impedance methods. – Bard, A.J., Stratmann, M., Unwin, P.R. (eds.). Encyclopedia of Electrochemistry, Vol. 3, Instrumentation and Electroanalytical Chemistry, Weinheim, Wiley-VCH. 196–229.
  15. Laaneots, R., Mathiesen, O. 2006. An Introduction to Metrology. Tallinn, TUT Press. 271 pp.
  16. Metrohm Autolab. [WWW document]. – URL http://www.ecochemie.nl. [Accessed 13 April 2021].
  17. Moschler, W. W. 2004. Wireless microwave wood moisture measurement system for wood drying kilns. Final Technical Report, Knoxville, Tennessee. University of Tennessee, 18 pp.
  18. R Core Team. 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [WWW document]. – URL http://www.r-project.org. [Accessed 13 April 2021].
  19. Rozema, P. 2010. Do’s and don’ts in respect to moisture measurement. – Proceedings of the Final Conference of COST Action E53: The Future of Quality Control for Wood & Wood Products, UK, 4-7th May 2010. Edinburgh, 9 pp. https://www.napier.ac.uk/~/media/worktribe/output-208736/e53edinburghproceedingspdf.pdf.
  20. Salin, J.G. 1990. Simulation of the timber drying process. Prediction of moisture and quality changes. – Doctoral thesis. Helsinki, EKONO Oy. 103 pp.
  21. Scanntronik Mugrauer GmbH. [WWW document]. – URL www.scanntronik.de/. [Accessed 13 April 2021].
  22. Stamm, A.J. 1927. The electrical resistance of wood as a measure of its moisture content. – Industrial and Engineering Chemistry, 19(9), 1021–1025.
  23. Tamme, H., Tamme, V., Kask, R., Muiste, P. 2019. Non-destructive dielectric method for determining the moisture content of newly sawn timber for moisture content above FSP. – Wang, X., Sauter, U.H., Ross, R.J. (eds.). Proceedings of the 21st International Nondestructive Testing and Evaluation of Wood Symposium. – General Technical Report FPL-GTR-272. Madison, WI: US. Department of Agriculture, Forest Service, Forest Products Laboratory, 213–224.
  24. Tamme, V. 2016. Development of resistance-type control methods for wood drying. – PhD thesis. Tartu, Estonian University of Life Sciences. 135 pp.
  25. Tamme, V., Muiste, P., Kask, R., Tamme, H. 2012. Experimental study of electrode effects of resistance type electrodes for monitoring wood drying process above fiber saturation point. – Forestry Studies / Metsanduslikud Uurimused, 56, 42–55. https://doi.org/10.2478/v10132-012-0004-6.
  26. Tamme, V., Muiste, P., Padari, A., Tamme, H. 2014. Modelling of resistance-type wood moisture meters for three deciduous tree species (black alder, birch, aspen) in moisture contents above fibre saturation point. – Baltic Forestry, 20(1), 157–166.
  27. Tamme, V., Muiste, P., Tamme, H. 2013. Experimental study of resistance type wood moisture sensors for monitoring wood drying process above fibre saturation point. – Forestry Studies / Metsanduslikud Uurimused, 59, 28–44. https://doi.org/10.2478/fsmu-2013-0009.
  28. Tamme, V., Tamme, H., Bernotas, T., Muiste, P., Olt, J. 2020. Moisture meter and method for measuring the moisture content of wood above the fibre saturation point of a wood with the electric charging effect. Patent No EE 05822B1 Priority: 16.07.2018. [WWW document]. – URL https://ee.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=0&ND=3&adjacent=true&locale=ee_EE&FT=D&date=20200217&CC=EE&NR=201800017A&KC=A. [Accessed 3 March 2020].
  29. Tamme, V., Tamme, H., Miidla, P., Muiste, P. 2021. Novel polarization-type moisture meter for determining moisture content of wood above fibre saturation point. – European Journal of Wood and Wood Products, 79, 1577–1587. http://link.springer.com/article/10.1007/s00107-021-01682-6.
  30. Tiitta, M., Savolainen, T., Olkkonen, H., Kanko, T. 1999. Wood moisture gradient analysis by electrical impedance spectroscopy. – Holzforschung, 53, 68–76.
  31. Tiitta, M., Tomppo, L., Lappalainen, R. 2010. Combined method for monitoring wood drying process. – Proceedings of 11th International IUFRO Wood Drying Conference, Sweden, 18-22 January. Skellefteå, 76–80.
  32. Uwizeyimana, P., Perrin, M., Eyma, F. 2020. Moisture monitoring in glulam timber structures with embedded resistive sensors: study of influence parameters. – Wood Science and Technology, 54, 1463–1478. https://doi.org/10.1007/s00226-020-01228-8.
  33. Wavetek Meterman. [WWW document]. – URL https://www.tequipment.net/WavetekMetermanLCR55.html. [Accessed 13 August 2021].
  34. Welling, J. 2010. Dried timber- how to specify correctly. European Drying Group (EDG), COST E53. 38 pp. [WWW document]. – URL https://businessdocbox.com/storage/76/74044204/1638107577/Y3f92J3v0Zn6mj1C96VKOA/74044204.pdf. [Accessed 13 April 2021].
  35. Zuleta, M. 2005. Electrochemical and ion transport characterisation of nanoporous carbon derived from SiC. – Doctoral thesis. Stockholm, KTH-Royal Institute of Technology, Department of Chemical Engineering and Technology. 85 pp. [WWW document]. – URL http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A7694&dswid=-1261. [Accessed 13 August 2021].
DOI: https://doi.org/10.2478/fsmu-2021-0005 | Journal eISSN: 1736-8723 | Journal ISSN: 1406-9954
Language: English
Page range: 72 - 87
Submitted on: Aug 23, 2021
Accepted on: Oct 4, 2021
Published on: Dec 1, 2021
Published by: Estonian University of Life Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Hannes Tamme, Regino Kask, Peeter Muiste, Valdek Tamme, published by Estonian University of Life Sciences
This work is licensed under the Creative Commons Attribution 4.0 License.