Have a personal or library account? Click to login

The Reserve Price Optimization for Publishers on Real-Time Bidding on-Line Marketplaces with Time-Series Forecasting

Open Access
|Nov 2020

Abstract

Today's Internet marketing ecosystems are very complex, with many competing players, transactions concluded within milliseconds, and hundreds of different parameters to be analyzed in the decision-making process. In addition, both sellers and buyers operate under uncertainty, without full information about auction results, purchasing preferences, and strategies of their competitors or suppliers. As a result, most market participants strive to optimize their trading strategies using advanced machine learning algorithms. In this publication, we propose a new approach to determining reserve-price strategies for publishers, focusing not only on the profits from individual ad impressions, but also on maximum coverage of advertising space. This strategy combines the heuristics developed by experienced RTB consultants with machine learning forecasting algorithms like ARIMA, SARIMA, Exponential Smoothing, and Facebook Prophet. The paper analyses the effectiveness of these algorithms, recommends the best one, and presents its implementation in real environment. As such, its results may form a basis for a competitive advantage for publishers on very demanding online advertising markets.

DOI: https://doi.org/10.2478/fman-2020-0013 | Journal eISSN: 2300-5661 | Journal ISSN: 2080-7279
Language: English
Page range: 167 - 180
Published on: Nov 7, 2020
Published by: Warsaw University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Andrzej Wodecki, published by Warsaw University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.