References
- Adesamoye, A. O., Torbert, H. A., and Kloepper, J. W. (2009). Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology, 58(4), 921–929. https://doi.org/10.1007/s00248-009-9531-y.
- Backer, R., Rokem, J. S., Ilangumaran, G., Lee, Y., Daniels, D. A., Praslickova, D., Ricci, E., Subramanian, S., and Smith, D. L. (2018). Plant growth-promoting rhizobacteria: mechanisms of action and roadmap to commercialization. Frontiers in Plant Science, 9, 1473. https://doi.org/10.3389/fpls.2018.01473.
- Belimov, A. A., Safronova, V. I., Sergeyeva, T. A., Egorova, T. N., Matveyeva, V. A., Tsyganov, V. E., Borisov, A. Y., Tikhonovich, I. A., Kluge, C., Preisfeld, A., Dietz, K. J., And Preisfeld, A. (2001). Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Canadian Journal of Microbiology, 47(7), 642–652. https://doi.org/10.1139/01-062.
- Bhattacharya, A., Mishra, P., Mishra, I., Arora, P., and Arora, N. K. (2024). Microbe-based biostimulants: latest developments and future perspectives. In N. K. Arora and B. Bouizgarne (Eds), Microbial Biotechnology for Sustainable Agriculture (Vol. 2, pp. 29–54). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-2355-3_2.
- Boyaci, H. F., Erbil, M., Yildiz, A., And Başpinar, U. F. (2025). Effect of plant growth-promoting local rhizobacteria on rhizome development and plant growth of Trachystemon orientalis. Research in Agricultural Sciences, 56(2), 122–129. https://doi.org/10.17097/agricultureatauni. 1640631.
- De Andrade, L. A., Santos, C. H. B., Frezarin, E. T., Sales, L. R., and Rigobelo, E. C. (2023). Plant growth-promoting rhizobacteria for sustainable agricultural production. Microorganisms, 11(4), 1088. https://doi.org/10.3390/microorganisms11041088.
- Espinosa-Palomeque, B., Jiménez-PÉrez, O., Ramírez-Gottfried, R. I., Preciado-Rangel, P., Buendía-García, A., Sifuentes, G. Z., Sariñana-Navarrete, M. A., and Rivas-García, T. (2025). Biocontrol of phytopathogens using plant growth promoting rhizobacteria: bibliometric analysis and systematic review. Horticulturae, 11 (3), 271. https://doi.org/10.3390/horticulturae11030271.
- Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica, 2012, 963401. https://doi.org/10.6064/2012/963401.
- GÓmez-GodÍnez, L. J., Aguirre-Noyola, J. L., MartÍnez-Romero, E., Arteaga-Garibay, R. I., Ireta-Moreno, J., and Ruvalcaba-Gómez, J. M. (2023). A look at plant-growth-promoting bacteria. Plants, 12(8), 1668. https://doi.org/10.3390/plants12081668.
- Gonzalez-Mancilla, A., Almaraz-Suárez, J. J., F Errera-Cerrato, R., Rodríguez-Guzmán, M. D. P., and Taboada-Gaytán, O. R. (2024). Photosynthetic activity and growth of poblano pepper biofertilized with plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi. Current Research in Microbial Sciences, 7, 100269. https://doi.org/10.1016/j.crmicr.2024.100269.
- Günes, A., Turan, M., Güllüce, M., and Sahin, F. (2014). Nutritional content analysis of plant growth-promoting rhizobacteria species. European Journal of Soil Biology, 60, 88–97. https://doi.org/10.1016/j. ejsobi.2013.10.010.
- Gunjal, A. B., and Glick, B. R. (2024). Plant growth-promoting bacteria (PGPB) in horticulture. Proceedings of the Indian National Science Academy, 90 (1), 1–11. https://doi.org/10.1007/s43538-023-00224-3.
- Harris, B. A., Bauske, E. M., and Pennisi, S. V. (2021). Cultural practices and microbial inoculants have variable impact on a bedding plant (Lantana camara L.) performance in the landscape. Scientia Horticulturae, 282, 110059. https://doi.org/10.1016/j. scienta.2021.110059.
- Hasan, A., Tabassum, B., Hashim, M., and Khan, N. (2024). Role of plant growth promoting rhizobacteria (PGPR) as a plant growth enhancer for sustainable agriculture: a review. Bacteria, 3(2), 59–75. https://doi.org/10.3390/bacteria3020005.
- Hoda, E. E. M., and Mona, S. (2014). Effect of bio and chemical fertilizers on growth and flowering of Petunia hybrida plants. American Journal of Plant Physiology, 9(2), 68–77. https://doi.org/10.3923/ajpp. 2014.68.77.
- Joshi, N., Raval, B., and Jha, C. K. (2025). The art of amalgamation: advancing crop productivity with PGPR consortia solutions. Current Agriculture Research Journal, 13(1), 4–23. https://doi.org/10.12944/CARJ.13.1.02.
- Karagöz, F. P., Dursun, A., and Kotan, R. (2019). Effects of rhizobacteria on plant development, quality of flowering and bulb mineral contents in Hyacinthus orientalis L. Alinteri Journal of Agriculture Science, 34(1), 88–95. https://doi.org/10.28955/alinterizbd.585219.
- Khandan-Mirkohi, A., Taheri, M., Zafar-Farrokhi, F., and Rejali, F. (2016). Effects of arbuscular mycorrhizal fungus and plant growth promoting rhizobacteria (PGPR) under drought stress on growth of ornamental Osteospermum (Osteospermum hybrida 'Passion Mix'). International Journal of Horticultural Science and Technology, 47, 177–191. https://doi.org/10.22059/ijhs.2016.58518.
- Khan, A. A., Wang, Y., Soliman, M. H., Alhoqail, W. A., Alhaithloul, H. S., Alghanem, S. M., and Latef, A. A. H. A. (2025). PGPR in agriculture: a sustainable approach to increasing climate change resilience. In N. K. Arora and B. Bouizgarne (Eds), Plant-microbe Interactions for Environmental and Agricultural Sustainability (pp. 129–154). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-84939-8_6.
- Khoso, M. A., Wagan, S., Alam, I., Hussain, A., Kurban, A., Saha, S., Poudel, T. K., Mangwar, H., and Liu, F. (2024). Impact of plant growth-promoting rhizobacteria (PGPR) on plant nutrition and root characteristics: current perspective. Plant Stress, 11, 100341. https://doi.org/10.1016/j. stress.2023.100341.
- Kisvarga, S., Farkas, D., Boronkay, G., NemÉnyi, A., and Orlóci, L. (2022). Effects of biostimulants in horticulture, with emphasis on ornamental plant production. Agronomy, 12(5), 1043. https://doi.org/10.3390/agronomy12051043.
- Kumari, A., Goyal, R. K., Choudhary, M., and Sindhu, S. S. (2016). Effects of some plant growth promoting rhizobacteria (PGPR) strains on growth and flowering of chrysanthemum. Journal of Crop and Weed, 12 (1), 7–15.
- Kumar, A., Patel, J. S., Meena, V. S., and Ramteke, P. W. (2019). Plant growth-promoting rhizobacteria: strategies to improve abiotic stresses under sustainable agriculture. Journal of Plant Nutrition, 42(11–12), 1402–1415.https://doi.org/10.1080/01904167.2019.16167 57.
- Kurniawan, A., Maghfoer, M. D., Rahmandhias, D. T., and Maulidah, N. I. (2025). Optimization of ornamental plant production through the application of PGPR in Gunungsari Village, Bumiaji District. Teumulong: Journal of Community Service, 3(2), 43–51. https://doi.org/10.62568/jocs.v3i2.191.
- Li, P. S., Kong, W. L., Wu, X. Q., and Zhang, Y. (2021). Volatile organic compounds of the plant growth-promoting rhizobacteria JZ-GX1 enhanced the tolerance of Robinia pseudoacacia to salt stress. Frontiers in Plant Science, 12, 753332. https://doi.org/10.3389/fpls.2021.753332.
- Mahmood, S. G., Al-Taae, H. H., and Adil, A. M. (2024). Effect of biotic factors and corm size on the corm yield of Freesia hybrid L. European Journal of Agricultural and Rural Education, 5(1), 32–40.
- Manhães, N. E., Jasmim, J. M., Silva, L. A. A., Castro, B. B., Motta, N. L., Pereira, V. R., and Erthal, A. P. R. C. (2015). Loofah fiber and Sphagnum moss in the acclimatization of Cattleya guttata and Zygopetalum mackayi inoculated with plant growth-promoting bacteria. Acta Horticulturae, 1076, 113–118. https://doi.org/10.17660/ActaHortic.2015.1076.12.
- Nordstedt, N. P., and Jones, M. L. (2020). Isolation of rhizosphere bacteria that improve quality and water stress tolerance in greenhouse ornamentals. Frontiers in Plant Science, 11, 826. https://doi.org/10.3389/fpls.2020.00826.
- Nordstedt, N. P., and Jones, M. L. (2021). Serratia plymuthica MBSA-MJ1 increases shoot growth and tissue nutrient concentration in containerized ornamentals grown under low-nutrient conditions. Frontiers in Microbiology, 12, 788198. https://doi.org/10.3389/fmicb.2021.788198.
- Ordookhani, K., Sharafzadeh, S., and Zare, M. (2011). Influence of PGPR on growth, essential oil and nutrients uptake of sweet basil. Advances in Environmental Biology, 5, 672–677.
- Pahalvi, H. N., Rafiya, L., Rashid, S., Nisar, B., and Kamili, A. N. (2021). Chemical fertilizers and their impact on soil health. In G. H. Dar, R. A. Bhat, M. A. Mehmood and K. R. Hakeem (Eds), Microbiota and Biofertilizers: Ecofriendly Tools for Reclamation of Degraded Soil Environs (Vol. 2, pp. 1–20). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-61010-4_1.
- Pathak, D. V., Kumar, M., and Rani, K. (2017). Biofertilizer application in horticultural crops. In D. Panpatte, Y. Jhala, R. Vyas and H. Shelat (Eds), Microorganisms for Green Revolution: Microbes for Sustainable Crop Production (Vol. 1, pp. 215–227). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-10-6241-4_11.
- Prisa, D., and Benati, A. (2021). Improving the quality of ornamental bulbous with plant growth-promoting rhizobacteria (PGPR). EPRA International Journal of Multidisciplinary Research (IJMR), 7(5), 255–263. https://doi.org/10.36713/epra7029.
- Rezvanypour, S., Hatamzadeh, A., Elahinia, S. A., and Asghari, H. R. (2015). Exogenous polyamines improve mycorrhizal development and growth and flowering of Freesia hybrida. Journal of Horticultural Research, 23 (2). https://doi.org/10.2478/johr-2015-0013.
- Rodriguez, H., Fraga, R., Gonzalez, T., and Bashan, Y. (2006). Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and Soil, 287, 15–21. https://doi.org/10.1007/s11104-006-9056-9.
- Sahu, J. K., Abhangrao, A. K., Mashkey, V. K., and Tripathi, V. (2025). Effect in growth, flowering and corm yield of gladiolus by different application methods of biofertilizers. Agricultural Science Digest, 45 (1), 9–16. https://doi.org/10.18805/ag.D-5730.
- Selim, S. M., and Zayed, M. S (2017). Role of bio-fertilizers in sustainable agriculture under abiotic stresses. In D. Panpatte, Y. Jhala, R. Vyas and H. Shelat (Eds), Microorganisms for Green Revolution: Microbes for Sustainable Crop Production (Vol. 1, pp. 281–301). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-10-6241-4_15.
- Shah, A., Nazari, M., Antar, M., Msimbira, L. A., Naamala, J., Lyu, D., Rabileh, M., Zajonc, J., and Smith, D. L. (2021). PGPR in agriculture: a sustainable approach to increasing climate change resilience. Frontiers in Sustainable Food Systems, 5, 667546. https://doi.org/10.3389/fsufs.2021.667546.
- Sharma, M., Sharma, V., Delta, A. K., and Kaushik, P. (2022). Rhizophagus irregularis and nitrogen fixing azotobacter with a reduced rate of chemical fertilizer application enhances pepper growth along with fruits biochemical and mineral composition. Sustainability, 14(9), 5653. https://doi.org/10.3390/su14095653.
- Singh, N. K., Sachan, K., Ranjitha, G., Chandana, S., Manoj, B. P., Panotra, N., and Katiyar, D. (2024). Building soil health and fertility through organic amendments and practices: a review. Asian Journal of Soil Science and Plant Nutrition, 10(1), 175–197. https://doi.org/10.9734/ajsspn/2024/v10i1224.
- Sisodia, A., Singh, A. K., Sisodia, V., and Barman, K. (2024). Revolutionizing floriculture: advantages and applications of bioinoculants in plant growth and development in ornamental flower crops. In A. Rakshit, V. S. Meena, L. F. Fraceto, M. Parihar, A. B. Mendonza and H. B. Singh (Eds), Bio-inoculants in Horticultural Crops (pp. 323–333). Amsterdam, The Netherlands: Woodhead Publishing.
- South, K. A., Nordstedt, N. P., and Jones, M. L. (2021). Identification of plant growth promoting rhizobacteria that improve the performance of greenhouse-grown petunias under low fertility conditions. Plants, 10 (7), 1410. https://doi.org/10.3390/plants10071410.
- Stelluti, S., Caser, M., Demasi, S., Herrero, E. R., García-Gonzalez, I., Lumini, E., Bianciotto, V., and Scariot, V. (2023). Beneficial microorganisms: a sustainable horticultural solution to improve the quality of saffron in hydroponics. Scientia Horticulturae, 319, 112155.https://doi.org/10.1016/j.scienta. 2023.112155.
- Tafaroji, S. H., Abtahi, S. A., Jafarinia, M., and Ebadi, M. (2025). Screening, molecular identification, and evaluation the effects of indigenous plant growth-promoting rhizobacteria on growth indices and nutrient uptake of chamomile (Matricaria chamomilla) under saline conditions. Frontiers in Microbiology, 16, 1551310. https://doi.org/10.3389/fmicb.2025.1551310.
- Thakur, R., Rahi, P., Gulati, A., and Gulati, A. (2025). Tea seedlings growth promotion by widely distributed and stress-tolerant PGPR from the acidic soils of the Kangra valley. BMC Microbiology, 25(1), 102. https://doi.org/10.1186/s12866-025-03811-0.
- Timofeeva, A. M., Galiamova, M. R., and Sedykh, S. E. (2023). Plant growth-promoting soil bacteria: nitrogen fixation, phosphate solubilization, siderophore production, and other biological activities. Plants, 12 (24), 4074. https://doi.org/10.3390/plants12244074.
- Ullah, S., Ikram, M., Sarfaraz, S., Ul Haq, I., Khan, A., Murad, Z., and Munsif, F. (2024). Influence of plant growth promoting rhizobacteria (PGPR) on the growth and yield of sunflower (Helianthus annus L.) under salt stress. Journal of Crop Health, 76(5), 1221–1234. https://doi.org/10.1007/s10343-024-01006-7.
- Vandana, U. K., Chopra, A., Bhattacharjee, S., and Mazumder, P. B. (2017). Microbial biofertilizer: a potential tool for sustainable agriculture. In D. Panpatte, Y. Jhala, R. Vyas and H. Shelat (Eds), Microorganisms for Green Revolution: Microbes for Sustainable Crop Production (Vol. 1, pp. 25–52). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-10-6241-4_2.
- Vessei, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255(2), 571–586. https://doi.org/10.1023/A:1026037216893.
- Vocciante, M., Grifoni, M., Fusini, D., Petruzzelli, G., and Franchi, E. (2022). The role of plant growth-promoting rhizobacteria (PGPR) in mitigating plant’s environmental stresses. Applied Sciences, 12 (3), 1231. https://doi.org/10.3390/app12031231.
- Vias, R. V., Panpatte, D. G., Jhala, Y. K., and Shelat, H. N. (2017). Wonders of microbes in agriculture for productivity and sustainability. In D. Panpatte, Y. Jhala, R. Vyas and H. Shelat (Eds), Microorganisms for Green Revolution: Microbes for Sustainable Crop Production (Vol. 1, pp. 1–23). Singapore: SpringerSingapore.https://doi.org/10.1007/978-981-10-6241-4_1.
- Wang, Y., Fang, X., Zhou, Y., Liao, Y., Zhang, Z., Deng, B., Guan, Z., Chen, S., Fang, W., Chen, F., and Zhao, S (2024). Transcriptome analysis of growth and quality response of chrysanthemum to co-inoculation with Bacillus velezensis and Pseudomonas aeruginosa. Scientia Horticulturae, 326, 112722. https://doi.org/10.1016/j. scienta.2023.112722.
- Yadav, P., Yadav, K., Mishra, A., and Singh, K. (2024). An assessment and analysis of diseases of economically important plant members of family Iridaceae. Journal of Plant Diseases and Protection, 131(2), 329–346. https://doi.org/10.1007/s41348-023-00836-3.
- Yenikalayci, A. (2025). Impact of different strains of Bacillus spp. on the bulb production of Tulipa sintenisii baker. Frontiers in Plant Science, 15, 1456919. https://doi.org/10.3389/fpls.2024.1456919.
- Yildiz, S., and Özcan, M. (2024). Küresel isinmanin çay tarimina etkileri. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 10(1), 47–68. https://doi.org/10.24180/ijaws.1394524.
- Zaib, M., Zubair, M., Aryan, M., Abdullah, M., Manzoor, S., Masood, F., and Saeed, S. (2023). A review on challenges and opportunities of fertilizer use efficiency and their role in sustainable agriculture with future prospects and recommendations. Current Research in Agriculture and Farming, 4 (4), 1–14. https://doi.org/10.18782/2582-7146.201.
- Zaidi, A., Khan, M. S., Ahmad, E., Saif, S., Rizvi, A., and Shahid, M. (2016). Growth stimulation and management of diseases of ornamental plants using phosphate solubilizing microorganisms: current perspective. Acta Physiologiae Plantarum, 38(5), 117. https://doi.org/10.1007/s11738-016-2133-7.