Have a personal or library account? Click to login
Unravelling the role of indigenous PGPB in corm development and mineral acquisition of Freesia hybrida: a multivariate perspective Cover

Unravelling the role of indigenous PGPB in corm development and mineral acquisition of Freesia hybrida: a multivariate perspective

Open Access
|Jan 2026

Figures & Tables

Figure 1.

F. hybrida 'White River' (left) and experimental layout in soil-based greenhouse (right).
F. hybrida 'White River' (left) and experimental layout in soil-based greenhouse (right).

Figure 2.

Daily mean temperature (red) and relative humidity (blue, dashed) in the greenhouse, shown with dual y-axes.
Daily mean temperature (red) and relative humidity (blue, dashed) in the greenhouse, shown with dual y-axes.

Figure 3.

Representative corms of F. hybrida under PGPR treatments (A1–A5), fertiliser (C.F.) and control (C). Within each panel: PGPR (left), fertiliser (middle), control (right). C.F., chemical fertilizer; PGPR, plant growth-promoting rhizobacteria.
Representative corms of F. hybrida under PGPR treatments (A1–A5), fertiliser (C.F.) and control (C). Within each panel: PGPR (left), fertiliser (middle), control (right). C.F., chemical fertilizer; PGPR, plant growth-promoting rhizobacteria.

Figure 4.

PCA of morphophysiological and nutritional traits of F. hybrida. PCA, principal component analysis.
PCA of morphophysiological and nutritional traits of F. hybrida. PCA, principal component analysis.

Figure 5.

PCA biplot of fertiliser treatments based on morphophysiological and nutritional traits in F. hybrida. PCA, principal component analysis,
PCA biplot of fertiliser treatments based on morphophysiological and nutritional traits in F. hybrida. PCA, principal component analysis,

Figure 6.

Proposed mechanisms by which Bacillus and Pseudomonas spp. enhance F. hybrida growth through VOCs, IAA, siderophores, phosphate solubilisation and ACC deaminase. ACC, 1-aminocyclopropane-1-carboxylate; IAA, indole-3-acetic acid; VOCs, volatile organic compounds.
Proposed mechanisms by which Bacillus and Pseudomonas spp. enhance F. hybrida growth through VOCs, IAA, siderophores, phosphate solubilisation and ACC deaminase. ACC, 1-aminocyclopropane-1-carboxylate; IAA, indole-3-acetic acid; VOCs, volatile organic compounds.

PCA loadings of morphophysiological and nutritional traits in F_ hybrida_

Contribution of the observations (%)
F1F2F3F4F5
A10.32514.72516.0770.00012.147
A263.3602.6462.7557.0903.387
A37.7205.9193.68754.76513.054
A45.72323.36520.97227.4417.961
A59.4690.51239.6248.8567.101
C0.07649.9673.0431.4119.453
C.F.13.3272.86513.8410.43746.897

Bulb content analyses after harvest_

Grp.NPKCaMgFeMnZnCu
A11.85 ±0.011 e0.19 ± 0.03 b0.63 ± 0.032 e0.28 ± 0.005 b0.12 ± 0.005 d1362 ± 33.45 e27.4 ± 1.153 cd10.03 ± 1.87 c4.23 ± 0.28 e
A22.10 ± 0.015 b0.24 ±0.00 a0.76 ± 0.015 b0.32 ±0.005 a0.25 ±0.005 a4660 ±61.46 a83.53 ±2.122 a18.36 ±0.28 a11.93 ±0.11 a
A31.93 ± 0.017 d0.14 ± 0.00 d0.64 ± 0.05 de0.27 ± 0.005 b0.10 ±0.01 e394 ± 20.54 f26.1 ± 19.52 de4.80 ±0.2 e3.73 ±0.51 f
A42.35 ±0.005 a0.19 ± 0.00 b0.82 ±0.005 a0.23 ± 0.005 c0.15 ± 0.005 c2106 ± 24.2 c39.36 ± 1.001 c10.46 ± 0.50 c5.73 ± 0.15 c
A51.80 ±0.011 f0.20 ± 0.05 b0.66 ±0.01 d0.22 ±0.001 d0.10 ± 0.00 e358 ± 17.95 f13.2 ± 0.66 e7.53 ± 1.10 d4.86 ± 0.25 d
C.F.1.71 ± 0.015 g0.16 ±0.05 cd0.59 ± 0.00 f0.21 ±0.01 d0.12 ± 0.005 d1546 ± 61.20 d30.6 ± 1.17 cd5.66 ± 0.68 e4.16 ± 0.15 ef
C.1.98 ±0.01 c0.18 ±0.01 be0.72 ± 0.005 c0.21 ±0.00 d0.18 ± 0.005 b3307 ± 94.90 b57.53 ± 2.35 b12.9 ± 0.55 b7.46 ± 0.25 b
LSD0.020.010.010.010.0164.513.161.1350.48
%CV0.667.872.182.464.142.6518.949.184.59

Variable contributions (%) to principal components (F1-F5) in F_ hybrida_

F1F2F3F4F5
CDW9.2982.3520.0643.8310.449
NC9.3001.7731.6920.8670.763
Net Δ CD0.44326.3677.28721.94812.173
LA8.2121.1651.5918.9959.854
Chl5.35810.4121.4782.89216.346
Net Δ CFW5.89610.06310.7050.0100.544
N2.7226.97540.4340.6727.444
P6.6290.61717.7519.7991.459
K5.7940.2364.71414.82340.051
Ca4.9743.6637.12734.3863.819
Mg8.9915.2030.6360.0331.037
Fe7.5089.3852.4310.3603.295
Mn7.8339.1331.8420.0142.750
Zn8.7004.4721.7901.1420.011
Cu8.3428.1830.4570.2260.004

Microbial traits and compositions of PGPB formulations implemented in the trial_

CodeCharacteristicsActive componentsProportions (CFU · mL-1)
A1Siderophores productionBacillus toyonensis, Lysinibacillus fusiformis1 × 107
A2IAA productionBacillus toyonensis, Pseudomonas putida1 × 107
A3Phosphate solubilisationBacillus proteolyticus, Pseudomonas batumici1 × 107
A4Potassium solubilisationPseudomonas lini, Bacillus safensis1 × 107
A5N2 fixerPseudomonas konensis, Bacillus thuringiensis1 × 107

Soil properties by treatment_

Grp.PHCaCO. (%)Salt (%)Sat (%)OM (%)Ntotal (%)P availKavailCaextrMgextrFeextrMnextrZnextrCuextr
Bad5.53 ± 0.05 c0.86 ± 0.11b0.15 ±0.00 a75.6 ± 0.57 b3.18 ± 0.02 c0.21 ± 0.00 b26.4 ± 0.59 c89.4 ± 1.22 a2284 ± 19.68 ab282 ± 1.80 b33.3 ± 1.10 b15.9 ± 0.40 b1.91 ± 0.05 c1.92 ± 0.07 c
C.F.6.22 ±0.00 a1.70 ± 0.2 a0.04 ±0.001 c78.6 ±0.57 a3.65 ± 0.01b0.23 ± 0.00 a43.52 ±2.87 a83.3 ± 1.85 b2184 ± 77.86 b233 ± 7.90 c33.7 ± 0.80 b8.10 ±0.21 c2.64 ± 0.08 b2.21 ± 0.07 b
Cont5.83 ± 0.05 b0.83 ± 0.05 b0.10 ± 0.0005 b77.6 ± 1.154 a4.25 ± 0.025 a0.20 ± 0.00 c39.7 ± 1.086 b73.5 ± 1.80 c2341 ± 37.06 a316 ± 7.29 a37.4 ± 0.75 a15.4 ± 0.22 b2.79 ± 0.05 a3.87 ±0.12 a
LSD0.090.270.001.630.040.003.613.30102.0512.591.800.590.130.19
%CV0.8012.120.111.060.541.224.932.012.252.272.592.162.683.56

Effects of PGPB consortia and chemical fertilisation on bulb development and reproductive traits in F_ hybrida_

Grp.CDW (g · parcel-1)Net Δ CFW (g · parcel-1)Net Δ CD (mm · parcel-1)NC (number · parcel-1)LA (cm2)CHL
A13.47 ± 0.26 c8.87 ± 1.33 b16.13 ± 0.67 c3.13 ± 0.34 a85.42 ± 10.29 bc59.58 ± 6.52 a
A24.20 ± 0.42 a10.46 ± 0.36 a21.15 ± 1.58 a2.53 ± 0.50 bc91.11 ± 9.65 a60.35 ± 5.65 a
A33.15 ± 0.51 d9.21 ± 1.33 b15.04 ± 1.24 d2.17 ± 0.38 d86.59 ± 11.81 bc58.03 ± 7.12 ab
A43.94 ± 0.49 b10.51 ± 0.31 a17.35 ± 1.59 b2.97 ± 0.14 a87.04 ± 9.90 ab59.64 ± 6.08 a
A53.27 ± 0.50 d8.37 ± 1.25 c15.09 ± 1.88 d2.62 ± 0.49 b85.09 ± 9.95 bc55.26 ± 8.11 b
C.F.3.21 ± 0.48 d9.03 ± 1.27 b14.10 ± 1.67 e2.40 ± 0.49 c84.90 ± 10.04 bc56.32 ± 4.22 b
C3.28 ± 0.54 d8.30 ± 0.97 c14.37 ± 2.01 e2.00 ± 0.21 e82.55 ± 9.56 c52.19 ± 8.37 c
LSD0.290.770.660.164.234.92
%CV12.3311.529.7715.3811.8311.72

Pearson correlation matrix among morphophysiological and nutritional traits of F_ hybrida_

VariablesCDWNCNet Δ CDLACHLNet Δ CFWNPKCaMgFeMnZnCu
CDW10.9430.4390.8230.6990.8610.5760.7950.7800.6050.8100.7150.7240.7960.758
NC0.94310.3390.9300.7300.8010.4550.8070.6230.8100.7960.6740.7100.7930.803
Net Δ CD0.4390.33910.1300.4380.3600.2090.3720.1710.234-0.045-0.130-0.1570.079-0.142
LA0.8230.9300.13010.8100.7180.3710.6700.6510.8290.7300.5930.6440.7340.774
Chl0.6990.7300.4380.81010.6010.4390.4680.6190.7360.5000.3730.3900.5750.432
Net Δ CFW0.8610.8010.3600.7180.60110.8170.4070.6630.5410.5670.4710.4920.4440.484
N0.5760.4550.2090.3710.4390.8171-0.0010.4580.3250.4390.4330.4250.2540.234
P0.7950.8070.3720.6700.4680.407-0.00110.5430.5040.7440.6610.6700.8540.802
K0.7800.6230.1710.6510.6190.6630.4580.54310.1770.6640.6020.5910.6580.610
Ca0.6050.8100.2340.8290.7360.5410.3250.5040.17710.5300.4050.4620.5450.550
Mg0.8100.796-0.0450.7300.5000.5670.4390.7440.6640.53010.9820.9880.9590.960
Fe0.7150.674-0.1300.5930.3730.4710.4330.6610.6020.4050.98210.9960.9240.920
Mn0.7240.710-0.1570.6440.3900.4920.4250.6700.5910.4620.9880.99610.9260.944
Zn0.7960.7930.0790.7340.5750.4440.2540.8540.6580.5450.9590.9240.92610.941
Cu0.7580.803-0.1420.7740.4320.4840.2340.8020.6100.5500.9600.9200.9440.9411
DOI: https://doi.org/10.2478/fhort-2025-0027 | Journal eISSN: 2083-5965 | Journal ISSN: 0867-1761
Language: English
Submitted on: Aug 30, 2025
|
Accepted on: Nov 20, 2025
|
Published on: Jan 27, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2026 Ümmü Özgül Karagüzel, Ergül Erkut, Sümeyye İslam, Atakan Yildiz, published by Polish Society for Horticultural Sciences (PSHS)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

AHEAD OF PRINT