Have a personal or library account? Click to login
Enhancement of some citrus rootstocks tolerance to drought stress by vermicompost and foliar application of trehalose Cover

Enhancement of some citrus rootstocks tolerance to drought stress by vermicompost and foliar application of trehalose

Open Access
|Dec 2025

References

  1. Abdallah, M. M. S., Abdelgawad, Z. A., and El-Bassiouny, H. M. S. (2016). Alleviation of the adverse effects of salinity stress using trehalose in two rice varieties. South African Journal of Botany, 103, 275–282, https://doi.org/10.1016/j.sajb.2015.09.019.
  2. Acosta-Pérez, P., Camacho-Zamora, B. D., Espinoza-Sánchez, E. A., Gutiérrez-Soto, G., Zavala-García, F., Abraham-Juárez, M. J., and Sinagawa-García, S. R. (2020). Characterization of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase genes and analysis of its differential expression in maize (Zea mays) seedlings under drought stress. Plants, 9, 315, https://doi.org/10.3390/plants9030315.
  3. Agarwal, S., and Shaheen, R. (2007). Stimulation of antioxidant system and lipid peroxidation by abiotic stresses in leaves of Momordica charantia. Brazilian Journal of Plant Physiology, 19, 149–161, https://doi.org/10.1590/S1677-04202007000200007.
  4. Ahmad, A., Aslam, Z., Hussain, S., Javed, T., Hussain, S., Bashir, S., Hussain, I., Belliturk, K., Adamski, R., Siuta, D., Dessoky, E. S., and Hessini, K. (2022). Soil application of wheat straw vermicompost enhances morpho-physiological attributes and antioxidant defense in wheat under drought stress. Frontiers in Environmental Science, 10, 894517, https://doi.org/10.3389/fenvs.2022.894517.
  5. Ahmed, F., and Morsy, M. H. (1999). A new method for measuring leaf area in different fruit species. Minia Journal of Agricultural Research and Development, 19, 97–105.
  6. Akram, N. A., Irfan, I., and Ashraf, M. (2016). Trehalose-induced modulation of antioxidative defence system in radish (Raphanus sativus L.) plants subjected to water-deficit conditions. Agrochimica – International Journal of Plant & Soil Science, 60(3), 186–198, https://doi.org/10.12871/00021857201633.
  7. Akram, N. A., Noreen, S., Noreen, T., and Ashraf, M. (2015). Exogenous application of trehalose alters growth, physiology and nutrient composition in radish (Raphanus sativus L.) plants under water-deficit conditions. Brazilian Journal of Botany, 38, 431–439, https://doi.org/10.1007/s40415-015-0149-7.
  8. Akram, N. A., Shafiq, F., and Ashraf, M. (2017). Ascorbic acid: A potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Frontiers in Plant Science, 8, 613, https://doi.org/10.3389/fpls.2017.00613.
  9. Aldesuquy, H., and Ghanem, H. (2015). Exogenous salicylic acid and trehalose ameliorate short term drought stress in wheat cultivars by up-regulating membrane characteristics and antioxidant defense system. Journal of Horticulture, 2(2),139, https://doi.org/10.4172/2376-0354.1000139.
  10. Ali, Q., and Ashraf, M. (2011). Induction of drought tolerance in maize (Zea mays L.) due to exogenous application of trehalose: Growth, photosynthesis, water relations and oxidative defence mechanism. Journal of Agronomy and Crop Science, 197, 258–271, https://doi.org/10.1111/j.1439-037X.2010.00463.x.
  11. Amarowicz, R., Cwalina-Ambroziak, B., Janiak, M. A., and Bogucka, B. (2020). Effect of N fertilization on the content of phenolic compounds in Jerusalem artichoke (Helianthus tuberosus L.) tubers and their antioxidant capacity. Agronomy, 10, 1215, https://doi.org/10.3390/agronomy10081215.
  12. Amiri, H., Ismaili, A., and Hosseinzadeh, S. R. (2017). Influence of vermicompost fertilizer and water deficit stress on morpho-physiological features of chickpea (Cicer arietinum L. cv. Karaj). Compost Science & Utilization, 25, 152–165, https://doi.org/10.1080/1065657x.2016.1249313.
  13. Andersen, M. N., Jensen, C. R., and Losch, R. (1992). The interaction effects of potassium and drought in field-grown barley. I. Yield, water-use efficiency and growth. Acta Agriculturae Scandinavica, Section B – Plant Soil Science, 42, 34–44, https://doi.org/10.1080/09064719209410197.
  14. Anjum, S. A., Xie, X., Farooq, M., Wang, L., Chang, X., Lan, X., Shahbaz, M., and Salhab, J. (2011). Effect of exogenous methyl jasmonate on growth, gas exchange and chlorophyll contents of soybean subjected to drought. African Journal of Biotechnology, 10, 9647–9656, https://doi.org/10.5897/ajb10.2641.
  15. Ansari, W. A., Atri, N., Singh, B., and Pandey, S. (2017). Changes in antioxidant enzyme activities and gene expression in two muskmelon genotypes under progressive water stress. Plant Biology, 61, 333–341, https://doi.org/10.1007/s10535-016-0694-3.
  16. AOAC. (2000). The official methods of analysis (p. 2200). Maryland, USA: Association of Official Analytical Chemists.
  17. Arancon, N. Q., Edwards, C. A., Bierman, P., Welch, C., and Metzger, J. D. (2004). Influences of vermicomposts on field strawberries: 1. Effects on growth and yields. Bioresource Technology, 93, 145–153, https://doi.org/10.1016/j.biortech.2003.10.014.
  18. Aslam, Z., Ahmad, A., Ibrahim, M., Iqbal, N., Idrees, M., Ali, A., Ahmad, I., Bellitürk, K., Nawaz, M., Aslam, M., and Ramzan, H. N. (2021). Microbial enrichment of vermicompost through earthworm Eisenia fetida (Savigny, 1926) for agricultural waste management and development of useful organic fertilizer. Pakistan Journal of Agricultural Sciences, 58, 851–861, https://doi.org/10.21162/pakjas/21.1378.
  19. Atik, A. (2013). Effects of planting density and treatment with vermicompost on the morphological characteristics of oriental beech (Fagus orientalis Lipsky). Compost Science & Utilization, 21, 87–98, https://doi.org/10.1080/1065657x.2013.836066.
  20. Bahcesular, B., Yildirim, E. D., Karacocuk, M., Kulak, M., and Karaman, S. (2020). Seed priming with melatonin effects on growth, essential oil compounds and antioxidant activity of basil (Ocimum basilicum L.) under salinity stress. Industrial Crops and Products, 146, 112165, https://doi.org/10.1016/j.indcrop.2020.112165.
  21. Balfagón, D., Terán, F., De Oliveira, T. D. R., Santa-Catarina, C., and Gòmez-Cadenas, A. (2022). Citrus rootstocks modify scion antioxidant system under drought and heat stress combination. Plant Cell Reports, 41, 593–602, https://doi.org/10.1007/S00299-021-02744-Y.
  22. Barnabás, B., Jäger, K., and Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell & Environment, 31, 11–38, https://doi.org/10.1111/j.1365-3040.2007.01727.x.
  23. Barrs, H., and Weatherley, P. (1962). A reexamination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15, 413, https://doi.org/10.1071/BI9620413.
  24. Bashir, M. A., Silvestri, C., Ahmad, T., Hafiz, I. A., Abbasi, N. A., Manzoor, A., Cristofori, V., and Rugini, E. (2020). Osmotin: A cationic protein leads to improve biotic and abiotic stress tolerance in plants. Plants, 9, 992, https://doi.org/10.3390/PLANTS9080992.
  25. Bates, L. S., Waldren, R. P., and Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205–207, https://doi.org/10.1007/BF00018060.
  26. Benffari, W., Boutasknit, A., Anli, M., Ait-El-Mokhtar, M., Ait-Rahou, Y., Ben-Laouane, R., Ben Ahmed, H., Mitsui, T., Baslam, M., and Meddich, A. (2022). The native arbuscular mycorrhizal fungi and vermicompost-based organic amendments enhance soil fertility, growth performance, and the drought stress tolerance of quinoa. Plants, 11, 393, https://doi.org/10.3390/PLANTS11030393/S1.
  27. Berova, M., and Karanatsidis, G. (2009). Influence of bio-fertilizer, produced by Lumbricus rubellus on growth, leaf gas-exchange and photosynthetic pigment content of pepper plants (Capsicum annuum L.). Acta Horticulturae, 830, 447–452, https://doi.org/10.17660/ACTHORTIC.2009.830.63.
  28. Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199–1200, https://doi.org/10.1038/1811199a0.
  29. Blouin, M., Barrere, J., Meyer, N., Lartigue, S., Barot, S., and Mathieu, J. (2019). Vermicompost significantly affects plant growth. A meta-analysis. Agronomy for Sustainable Development, 39, 1–15, https://doi.org/10.1007/S13593-019-0579-X.
  30. Brucker, E., Kernchen, S., and Spohn, M. (2020). Release of phosphorus and silicon from minerals by soil microorganisms depends on the availability of organic carbon. Soil Biology and Biochemistry, 143, 107737, https://doi.org/10.1016/J.SOILBIO.2020.107737.
  31. Celikcan, F., Kocak, M. Z., and Kulak, M. (2021). Vermicompost applications on growth, nutrition uptake and secondary metabolites of Ocimum basilicum L. under water stress: A comprehensive analysis. Industrial Crops and Products, 171, 113973, https://doi.org/10.1016/J.INDCROP.2021.113973.
  32. Chaffey, N. J. (2000). Plant microtechnique and microscopy by Steven E. Ruzin. New Phytologist, 148(1), 57–58, https://doi.org/10.1046/j.1469-8137.2000.00735.x.
  33. Chartzoulakis, K., Patakas, A., and Bosabalidis, A. M. (1999). Changes in water relations, photosynthesis and leaf anatomy induced by intermittent drought in two olive cultivars. Environmental and Experimental Botany, 42, 113–120, https://doi.org/10.1016/S0098-8472(99)00024-6.
  34. Chaves, M. M., Pereira, J. S., Maroco, J., Rodrigues, M. L., Ricardo, C. P., Osório, M. L., Carvalho, I., Faria, T., and Pinto, C. A. (2003). How plants cope with water stress in the field: Photosynthesis and growth. Annals of Botany, 89, 907–916, https://doi.org/10.1093/aob/mcg095.
  35. Chen, A., and Gibney, P. A. (2023). Dietary trehalose as a bioactive nutrient. Nutrients, 15, 1393, https://doi.org/10.3390/NU15061393.
  36. Chen, J., Xu, W., Veiten, J., Xin, Z., and Stout, J. (2012). Characterization of maize inbred lines for drought and heat tolerance. Journal of Soil and Water Conservation, 67, 354–364, https://doi.org/10.2489/JSWC.67.5.354.
  37. Chen, J.-H. (2006). The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. Department of Soil and Environmental Sciences, National Chung Hsing University, Taiwan, R.O.C. International Workshop on Sustainable Management, 1, 1–11, https://www.researchgate.net/publication/237551520.
  38. Chen, Y., Müller, F., Rieu, I., and Winter, P. (2016). Epigenetic events in plant male germ cell heat stress responses. Plant Reproduction, 29, 21–29, https://doi.org/10.1007/S00497-015-0271-5/METRICS.
  39. Coria-Cayupán, Y. S., De Pinto, M. I. S., and Nazareno, M. A. (2009). Variations in bioactive substance contents and crop yields of lettuce (Lactuca sativa L.) cultivated in soils with different fertilization treatments. Journal of Agricultural and Food Chemistry, 57, 10122–10129, https://doi.org/10.1021/JF903019D.
  40. Coşkun, Öf. (2025). Association mapping for drought tolerance in watermelons (Citrullus lanatus L.). Horticulturae, 11, 193, https://doi.org/10.3390/HORTICULTURAE11020193.
  41. Din, J., Khan, S., Ali, I., and Gurmani, A. (2011). Physiological and agronomic response of canola varieties to drought stress. The Journal of Animal and Plant Sciences, 21(1), 78–82. https://www.researchgate.net/publication/281331570.
  42. Doklega, S. M. A., Imryed, Y. F. E., and Mark, C. (2020). Effect of vermicompost and nitrogen levels fertilization on yield and quality of head lettuce. Journal of Plant Production, 11, 1495–1499, https://doi.org/10.21608/JPP.2020.149823.
  43. Duman, F., Aksoy, A., Aydin, Z., and Temizgul, R. (2011). Effects of exogenous glycinebetaine and trehalose on cadmium accumulation and biological responses of an aquatic plant (Lemna gibba L.). Water, Air, and Soil Pollution, 217, 545–556, https://doi.org/10.1007/S11270-010-0608-5.
  44. Elbein, A. D., Pan, Y. T., Pastuszak, I., and Carroll, D. (2003). New insights on trehalose: A multifunctional molecule. Glycobiology, 13 (4), 17R–27R, https://doi.org/10.1093/GLYCOB/CWG047.
  45. Erdal, İ, and Ekinci, K. (2020). Effects of composts and vermicomposts obtained from forced aerated and mechanically turned composting method on growth, mineral nutrition and nutrient uptake of wheat. Journal of Plant Nutrition and Soil Science, 43, 1–15, https://doi.org/10.1080/01904167.2020.1727506.
  46. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., and Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Sustainable Agriculture, 29, 153–188, https://doi.org/10.1007/978-90-481-2666-8_12.
  47. Fichtner, F., and Lunn, J. E. (2021). The role of trehalose 6-phosphate (Tre6P) in plant metabolism and development. Annual Review of Plant Biology, 72, 737–760, https://doi.org/10.1146/ANNUREV-ARPLANT-050718-095929/CITE/REFWORKS.
  48. Flexas, J., Ribas-Carbo, M., Hanba, Y. T., Diaz-Espejo, A., Galmés, J., and Medrano, H. (2007). Mesophyll conductance to CO2: Current knowledge and future prospects. Plant, Cell and Environment, 31(5), 602–621, https://doi.org/10.1111/j.1365-3040.2007.01757.x.
  49. Fu, J., Fry, J., and Huang, B. (2004). Minimum water requirements of four turfgrasses in the transition zone. Hortscience: A Publication of the American Society for Horticultural Science, 39, 1740–1744, https://doi.org/10.21273/HORTSCI.39.7.1740.
  50. García, A. C., Santos, L. A., Izquierdo, F. G., Rumjanek, V. M., Castro, R. N., Dos Santos, F S., De Souza, L. G. A., and Berbara, R. L. L. (2014). Potentialities of vermicompost humic acids to alleviate water stress in rice plants (Oryza sativa L.). Journal of Geochemical Exploration, 136, 48–54, https://doi.org/10.1016/J.GEXPLO.2013.10.005.
  51. García, A. C., Santos, L. A., Izquierdo, F G., Sperandio, M. V. L., Castro, R. N., and Berbara, R. L. L. (2012). Vermicompost humic acids as an ecological pathway to protect rice plant against oxidative stress. Ecological Engineering, 47, 203–208, https://doi.org/10.1016/J.ECOLENG.2012.06.011.
  52. Garg, N., and Manchanda, G. (2009). ROS generation in plants: Boon or bane? Plant Biosystems, 143, 81–96, https://doi.org/10.1080/11263500802633626.
  53. Gharibi, S., Sated Tabatabaei, B. E., Saeidi, G., Talebi, M., and Matkowski, A. (2019). The effect of drought stress on polyphenolic compounds and expression of flavonoid biosynthesis related genes in Achillea pachycephala Rech.f. Phytochemistry, 162, 90–98, https://doi.org/10.1016/J.PHYTOCHEM.2019.03.004.
  54. Gholipoor, M., Karamzadeh, A., and Gholami, A. (2014). Vermicompost as a soil supplement to relieve the effects of low-intensity drought stress on chickpea yield. Acta Horticulturae, 1018, 219–226, https://doi.org/10.17660/ACTAHORTIC.2014.1018.22.
  55. González, J. A., Gallardo, M., Hilal, M. B., Rosa, M. D., and Prado, F. E. (2019). Physiological responses of quinoa (Chenopodium quinoa) to drought and water logging stresses: Dry matter partitioning. Botanica Studies, 50(1), 3542, https://www.researchgate.net/publication/279582174.
  56. Guerel, M., Baccouri, O., Boujnah, D., Chaïbi, W., and Zarrouk, M. (2009). Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Scientia Horticulturae (Amsterdam), 119, 257–263, https://doi.org/10.1016/J.SCIENTA.2008.08.006.
  57. Hakim, A., Purvis, A. C., and Mullinix, B. G. (1999). Differences in chilling sensitivity of cucumber varieties depends on storage temperature and the physiological dysfunction evaluated. Postharvest Biology and Technology, 17, 97–104, https://doi.org/10.1016/S0925-5214(99)00037-X.
  58. Hammad, S. A. R., and Ali, O. A. M. (2014). Physiological and biochemical studies on drought tolerance of wheat plants by application of amino acids and yeast extract. Annals of Agricultural Sciences, 59, 133–145, https://doi.org/10.1016/J.AOAS.2014.06.018.
  59. Harborne, J. B., and Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55, 481–504, https://doi.org/10.1016/S0031-9422(00)00235-1.
  60. Hassan, M. U., Aamer, M., Chattha, M. U., Haiying, T., Shahzad, B., Barbanti, L., Nawaz, M., Rasheed, A., Afzal, A., Liu, Y., and Guoqin, H. (2020). The critical role of zinc in plants facing the drought stress. Agriculture, 10, 396, https://doi.org/10.3390/AGRICULTURE10090396.
  61. Hassan, M. U., Nawaz, M., Shah, A. N., Raza, A., Barbanti, L., Skalicky, M., Hashem, M., Brestic, M., Pandey, S., Alamri, S., Mostafa, Y. S., Sabagh, A. E. L., and Qari, S. H. (2023). Trehalose: A key player in plant growth regulation and tolerance to abiotic stresses. Journal of Plant Growth Regulation, 42, 4935–4957, https://doi.org/10.1007/S00344-022-10851-7/METRICS.
  62. Hazarika, T. K., and Aheibam, B. (2019). Soil nutrient status, yield and quality of lemon (Citrus limon Burm.) cv. ‘Assam lemon’ as influenced by bio-fertilizers, organics and inorganic fertilizers. Journal of Plant Nutrition, 42, 853–863, https://doi.org/10.1080/01904167.2019.1584213.
  63. Huang, B., and Xu, C. (2008). Identification and characterization of proteins associated with plant tolerance to heat stress. Journal of Integrative Plant Biology, 50, 1230–1237, https://doi.org/10.1111/J.1744-7909.2008.00735.X.
  64. Huerta, E., Vidal, O., Jarquin, A., Geissen, V., and Gomez, R. (2010). Effect of vermicompost on the growth and production of Amashito pepper, interactions with earthworms and rhizobacteria. Compost Science & Utilization, 18, 282–288, https://doi.org/10.1080/1065657X.2010.10736967.
  65. Hu, Y., and Schmidhalter, U. (2005). Drought and salinity: A comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrition and Soil Science, 168, 541–549, https://doi.org/10.1002/JPLN.200420516.
  66. Iturbe-Ormaetxe, I., Escuredo, P R., Arrese-Igor, C., and Becana, M. (1998). Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiology, 116, 173–181, https://doi.org/10.1104/PP.116.1.173.
  67. Jaleel, C. A., Manivannan, P., Wahid, A., Farooq, M., Somasundaram, R., and Panneerselvam, R. (2009). Drought stress in plants: A review on morphological characteristics and pigments composition. International Journal of Agriculture and Biology, 11, 100–105, https://www.researchgate.net/publication/253008137.
  68. Kale, R. D., Mallesh, B. C., Kubra, B., and Bagyaraj, D. J. (1992). Influence of vermicompost application on the available macronutrients and selected microbial populations in a paddy field. Soil Biology and Biochemistry, 24, 1317–1320, https://doi.org/10.1016/0038-0717(92)90111-A.
  69. Karlsons, A., Osvalde, A., Ersone-Ozola, U., and Ievinsh, G. (2016). Vermicompost from municipal sewage sludge affects growth and mineral nutrition of winter rye (Secale cereale L.) plants. Journal of Plant Nutrition and Soil Science, 39, 765–780, https://doi.org/10.1080/01904167.2015.1087566.
  70. Khehra, S., and Bal, J. S. (2016). Influence of combined use of organic, inorganic and biological sources of nutrients on fruit quality in lemon. International Journal of Agriculture Environment and Biotechnology, 9, 85, https://doi.org/10.5958/2230-732X.2016.00013.9.
  71. Kiran, S. (2019). Effects of vermicompost on some morphological, physiological and biochemical parameters of lettuce (Lactuca sativa var. crispa) under drought stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47, 352–358, https://doi.org/10.15835/NBHA47111260.
  72. Klute, A. (ed.) (1986). Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. 2nd ed. American Society of Agronomy, Soil Science Society of America, Madison, WI, USA, pp. 87–89. https://doi.org/10.2136/sssabookser5.1.2ed.
  73. Kosar, F., Akram, N. A., Ashraf, M., Ahmad, A., Alyemeni, M. N., and Ahmad, P. (2021). Impact of exogenously applied trehalose on leaf biochemistry, achene yield and oil composition of sunflower under drought stress. Physiologia Plantarum, 172, 317–333, https://doi.org/10.1111/PPL.13155.
  74. Kosem, H., Kocak, M. Z., Kaysim, M. G., Celikcan, F., and Kulak, M. (2022). Liquid leachate produced from vermicompost effects on some agronomic attributes and secondary metabolites of sweet basil (Ocimum basilicum L.) exposed to severe water stress conditions. Horticulturae, 8, 1190, https://doi.org/10.3390/HORTICULTURAE8121190.
  75. Kosem, N., Han, Y. H., and Moongkarndi, P. (2007). Antioxidant and cytoprotective activities of methanolic extract from Garcinia mangostana hulls. ScienceAsia, 33, 283–292, https://doi.org/10.2306/scienceasia1513-1874.2007.33.283.
  76. Koshita, Y., and Takahara, T. (2004). Effect of water stress on flower-bud formation and plant hormone content of satsuma mandarin (Citrus unshiu Marc.). Scientia Horticulturae (Amsterdam), 99, 301–307, https://doi.org/10.1016/S0304-4238(03)00113-4.
  77. Lazcano, C., Arnold, J., Zaller, J. G., Domínguez Martín, J., and Tato Salgado, A. (2009). Compost and vermicompost as nursery pot components: Effects on tomato plant growth and morphology. Spanish Journal of Agricultural Research, 7, 944–951, https://dialnet.unirioja.es/servlet/articulo?codigo=3096039, https://doi.org/10.5424/sjar/2009074-1107.
  78. Li, X., and Liu, F. (2016). Drought stress memory and drought stress tolerance in plants: Biochemical and molecular basis. Journal of Physiology and Biochemistry, 1, 17–44, https://doi.org/10.1007/978-3-319-28899-4_2.
  79. Lin, Q., Wang, S., Dao, Y., Wang, J., and Wang, K. (2020). Arabidopsis thaliana trehalose-6-phosphate phosphatase gene TPPI enhances drought tolerance by regulating stomatal apertures. Journal of Experimental Botany, 71, 4285–4297, https://doi.org/10.1093/jxb/eraa173.
  80. Mahmood, M., Bidabadi, S. S., Ghobadi, C., and Gray, D. J. (2012). Effect of methyl jasmonate treatments on alleviation of polyethylene glycol-mediated water stress in banana (Musa acuminata cv. “Berangan”, AAA) shoot tip cultures. Plant Growth Regulator, 68, 161–169, https://doi.org/10.1007/S10725-012-9702-6.
  81. Maksimović, I. V., Kastori, R. R., Petrovic, N. M., Kovacev, L. M., and Sklenar, P. S. (2003). The effect of water potential on accumulation of some essential elements in sugar beet leaves, Beta vulgaris ssp. vulgaris. Zbornik Matice Srpske za Prirodne Nauke, 104, 39–50, https://doi.org/10.2298/ZMSPN0304039M.
  82. Mao, R., Sun, Z., Zhu, L., and Zhang, H. (2011b). Anatomical and physiological responses of citrus leaves to drought stress. Acta Horticulturae Sinica, 38(5), 925–932.
  83. Mao, X., Sun, B., Xun, S., Zhang, Z., Qiao, Y., Liu, Z., Han, C., Zhong, W., Lii, Q., And Zhang, C. (2011a). Gene expression profiling in response to drought stress in citrus leaves by cDNA-AFLP. Acta Horticulturae, 38, 417, https://doi.org/10.16420/J.ISSN.0513-353X.2018-0423.
  84. Marinova, D., Ribarova, F., and Atanassova, M. (2005). Total phenolics and total flavonoids in Bulgarian fruits and vegetables. Journal of the University of Chemical Technology and Metallurgy, 40(3), 255–260, https://www.researchgate.net/publication/258769164.
  85. Ma, C., Wang, Z., Kong, B., and Lin, T. (2013). Exogenous trehalose differentially modulate antioxidant defense system in wheat callus during water deficit and subsequent recovery. Plant Growth Regulator, 70, 275–285, https://doi.org/10.1007/S10725-013-9799-2.
  86. Mibei, E. K., Ambuko, J., Giovannoni, J. J., Onyango, A. N., and Owino, W. O. (2017). Carotenoid profiling of the leaves of selected African eggplant accessions subjected to drought stress. Food Science and Nutrition, 5, 113–122, https://doi.org/10.1002/FSN3.370.
  87. Montales, C. L. B. (2024). Agricultural activities implemented in secondary schools relative to food security: A systematic literature review. International Journal of Research Publication and Reviews, 5, 3044–3050, https://doi.org/10.55248/gengpi.5.1224.3551.
  88. Moran, R. (1982). Formulae for determination of chlorophyllous pigments extracted with N, N-dimethylformamide. Plant Physiology, 69, 1376–1381, https://doi.org/10.1104/PP.69.6.1376.
  89. Munter, R. C., Halverson, T. L., and Anderson, R. D. (2008). Quality assurance for plant tissue analysis by ICP-AES. Communications in Soil Science and Plant Analysis, 15, 1285–1322, https://doi.org/10.1080/00103628409367559.
  90. Nakano, Y., and Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867–880, https://doi.org/10.1093/OXFORDJOURNALS.PCP.A076232.
  91. Naseer, M. A. U. R., Mehdi, M., Ashfaq, M., Hassan, S., and Abid, M. (2019). Effect of marketing channel choice on the profitability of citrus farmers: Evidence form Punjab-Pakistan. Pakistan Journal of Agriculture Research, 56, 1003–1011, https://doi.org/10.21162/PAKJAS/19.8671.
  92. Nounjan, N., Nghia, P. T., and Theerakulpisut, P. (2012). Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. Journal of Plant Physiology, 169, 596–604, https://doi.org/10.1016/J.JPLPH.2012.01.004.
  93. Olmos, E., Sánchez-Blanco, M. J., Ferréndez, T., and Alarcòn, J. J. (2007). Subcellular effects of drought stress in Rosmarinus officinalis. Plant Biology, 9, 77–84, https://doi.org/10.1055/S-2006-924488/ID/42/BIB.
  94. Onwe, R. O., Onwosi, C. O., Ezugworie, F. N., Ekwealor, C. C., and Okonkwo, C. C. (2022). Microbial trehalose boosts the ecological fitness of biocontrol agents, the viability of probiotics during long-term storage and plants tolerance to environmental-driven abiotic stress. Science of the Total Environment, 806, 150432, https://doi.org/10.1016/J.SCITOTENV.2021.150432.
  95. Osakabe, Y., Osakabe, K., Shinozaki, K., and Tran, L. S. P. (2014). Response of plants to water stress. Frontiers in Plant Science, 5, 86, https://doi.org/10.3389/FPLS.2014.00086/BIBTEX.
  96. Pitman, W. D., Holt, E. C., Conrad, B. E., and Bashaw, E. C. (1983). Histological differences in moisture-stressed and nonstressed Kleingrass forage. Crop Science, 23, 793–795, https://doi.org/10.2135/CROPSCI1983.0011183X002300040046X.
  97. Pourranjbari Saghaiesh, S., Souri, M. K., and Moghaddam, M. (2019). Characterization of nutrients uptake and enzymes activity in Khatouni melon (Cucumis melo var. inodorus) seedlings under different concentrations of nitrogen, potassium and phosphorus of nutrient solution. Journal of Plant Nutrition and Soil Science, 42, 178–185, https://doi.org/10.1080/01904167.2018.1551491.
  98. Qaderi, M. M., Martel, A. B., and Dixon, S. L. (2019). Environmental factors influence plant vascular system and water regulation. Plants, 8(3), 65, https://doi.org/10.3390/plants8030065.
  99. Rafie-Rad, Z., Moradkhani, M., Golchin, A., Raza, T., and Eash, N. S. (2022). Abiotic stresses management in citrus. Citrus research - horticultural and human health aspects, https://doi.org/10.5772/INTECHOPEN.108337.
  100. Ramegowda, V., Basu, S., Krishnan, A., and Pereira, A. (2014). Rice growth under drought kinase is required for drought tolerance and grain yield under normal and drought stress conditions. Plant Physiology, 166, 1634–1645, https://doi.org/10.1104/PP.114.248203.
  101. Rana, H., Sharma, K., and Negi, M. (2020). Effect of organic manure and biofertilizers on plant growth, yield and quality of sweet orange (Citrus sinensis L.). International Journal of Current Microbiology and Applied Sciences, 9, 2064–2070, https://doi.org/10.20546/IJCMAS.2020.904.247.
  102. Rasheed, R., Ashraf, M. A., Iqbal, M., Hussain, I., Akbar, A., Farooq, U., and Shad, M. I. (2020). Major constraints for global rice production: Changing climate, abiotic and biotic stresses. In A. Roychoudhury (Ed.), Rice research for quality improvement: Genomics and genetic engineering (Vol. 1, pp. 15–45). Singapore: Springer, https://doi.org/10.1007/978-981-15-4120-9_2.
  103. Rashtbari, M., Hossein Ali, A., and Ghorchini, M. (2020). Effect of vermicompost and municipal solid waste compost on growth and yield of canola under drought stress conditions. Communications in Soil Science and Plant Analysis, 51, 2215–2222, https://doi.org/10.1080/00103624.2020.1820023.
  104. Raza, A., Bhardwaj, S., Atikur Rahman, M., Garcia-Caparròs, P., Habib, M., Saeed, F., Charagh, S., Foyer, C. H., Siddique, K. H. M., and Varshney, R. K. (2024). Trehalose: A sugar molecule involved in temperature stress management in plants. The Crop Journal, 12, 1–16, https://doi.org/10.1016/J.CJ.2023.09.010.
  105. Ribeiro, G. D., De Holanda Paranhos, L., and Eieutherio, E. C. A. (2024). Trehalose promotes biological fitness of fungi. Fungal Biology, 128(8), 1–10, https://doi.org/10.1016/J.FUNBIO.2024.03.004.
  106. Roy, S., Arunachalan, K., Dutta, B. K., and Arunachalam, A. (2010). Effect of organic amendments of soil on growth and productivity of three common crops viz. Zea mays, Phaseolus vulgaris and Abelmoschus esculentus. Applied Soil Ecology, 45, 78–84, https://doi.org/10.1016/J.APSOIL.2010.02.004.
  107. Sachdev, S., Ansari, S. A., Ansari, M. I., Fujita, M., and Hasanuzzaman, M. (2021). Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants, 10, 277, https://doi.org/10.3390/ANTIOX10020277.
  108. Sadak, M. S. (2016). Mitigation of drought stress on fenugreek plant by foliar application of trehalose. International Journal of ChemTech Research, 9, 147–155. https://www.researchgate.net/publication/301920704.
  109. Sadak, M. S., EL-Bassiouny, H. M. S., and Dawood, M. G. (2019). Role of trehalose on antioxidant defense system and some osmolytes of quinoa plants under water deficit. Bulletin of the National Research Centre, 43, 1–11, https://doi.org/10.1186/S42269-018-0039-9.
  110. Selote, D. S., and Khanna-Chopra, R. (2010). Antioxidant response of wheat roots to drought acclimation. Protoplasma, 245, 153–163, https://doi.org/10.1007/S00709-010-0169-X.
  111. Sereme, A., Dabire, C., Koala, M., Somda, M. K., and Traore, A. S. (2016). Influence of organic and mineral fertilizers on the antioxidants and total phenolic compounds level in tomato (Solanum lycopersicum) var. Mongal F1. Journal of Experimental Biology and Agricultural Sciences, 4, 414–420, https://doi.org/10.18006/2016.4(4)0.414.420.
  112. Sgherri, C., Cosi, E., and Navari-Izzo, F. (2003). Phenols and antioxidative status of Raphanus sativus grown in copper excess. Physiologia Plantarum, 118, 21–28, https://doi.org/10.1034/J.1399-3054.2003.00068.X.
  113. Shafiq, S., Akram, N. A., and Ashraf, M. (2015). Does exogenously-applied trehalose alter oxidative defense system in the edible part of radish (Raphanus sativus L.) under water-deficit conditions? Scientia Horticulturae (Amsterdam), 185, 68–75, https://doi.org/10.1016/J.SCIENTA.2015.01.010.
  114. Shao, H. B., Chu, L. Y., Jaleel, C. A., and Zhao, C. X. (2008). Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies, 331, 215–225, https://doi.org/10.1016/j.crvi.2008.01.002.
  115. Sharma, M. P., Grover, M., Chourasiya, D., Bharti, A., Agnihotri, R., Maheshwari, H. S., Pareek, A., Buyer, J. S., Sharma, S. K., Schütz, L., Mathimaran, N., Singla-Pareek, S. L., Grossman, J. M., and Bagyaraj, D. J. (2020). Deciphering the role of trehalose in tripartite symbiosis among rhizobia, arbuscular mycorrhizal fungi, and legumes for enhancing abiotic stress tolerance in crop plants. Frontiers in Microbiology, 11, 509919, https://doi.org/10.3389/fmicb.2020.509919.
  116. Sinha, A. K. (1972). Colorimetric assay of catalase. Analytical Biochemistry, 47, 389–394, https://doi.org/10.1016/0003-2697(72)90132-7.
  117. Sun, Y., Niu, G., and Perez, C. (2015). Relative salt tolerance of seven Texas Superstar® perennials. Hortscience: A Publication of the American Society for Horticultural Science, 50(10), 1562–1566, https://doi.org/10.21273/HORTSCI.50.10.1562.
  118. Syvertsen, J. P., and Levy, Y. (2005). Drought stress and citrus tree physiology. Horticultural Reviews, 31, 231–276, https://doi.org/10.1002/9780470650882.ch5.
  119. Talat, H., Shafqat, W., and Qureshi, M. A. (2020). Effect of gibberellic acid on fruit quality of Kinnow mandarin. Journal of Global Innovations in Agricultural Sciences, 8, 59–63, https://doi.org/10.22194/jgiass/8.901.
  120. Tarek, A. E., Sadak, M. S., and Dawood, M. G. (2017). Improving drought tolerance of quinoa plant by foliar treatment of trehalose. Agricultural Engineering International: CIGR Journal, Special Issue, 19, 245–254, https://www.researchgate.net/publication/325102189.
  121. Terashima, I., Hanba, Y. T., Tholen, D., and Niinemets, Ü (2011). Leaf functional anatomy in relation to photosynthesis. Plant Physiology, 155(1), 108–116, https://doi.org/10.1104/pp.110.165472.
  122. Theerakulpisut, P., and Phongngarm, S. (2013). Alleviation of adverse effects of salt stress on rice seedlings by exogenous trehalose. Asian Journal of Crop Science, 5(4), 405–415, https://doi.org/10.3923/AJCS.2013.405.415.
  123. Wang, L., Wang, S., Chen, W., Li, H., and Deng, X. (2017). Physiological mechanisms contributing to increased water-use efficiency in winter wheat under organic fertilization. Plos One, 12(6), e0180205, https://doi.org/10.1371/JOURNAL.PONE.0180205.
  124. Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144, 307–313, https://doi.org/10.1016/S0176-1617(11)81192-2.
  125. Wheeler, T., and Von Braun, J. (2013). Climate change impacts on global food security. Science, 341(6145), 508–513, https://doi.org/10.1126/SCIENCE.1239402.
  126. Wu, Q. S., Srivastava, A. K., and Zou, Y. N. (2013). AMF-induced tolerance to drought stress in citrus: A review. Scientia Horticulturae (Amsterdam), 164, 77–87, https://doi.org/10.1016/J.SCIENTA.2013.09.010.
  127. Xu, M., Dong, J., Zhang, M., Xu, X., and Sun, L. (2012). Cold-induced endogenous nitric oxide generation plays a role in chilling tolerance of loquat fruit during postharvest storage. Postharvest Biology and Technology, 65, 5–12, https://doi.org/10.1016/J.P0STHARVBIO.2011.10.008.
  128. Yang, H., Wu, F., and Cheng, J. (2011). Reduced chilling injury in cucumber by nitric oxide and the antioxidant response. Food Chemistry, 127, 1237–1242, https://doi.org/10.1016/J.FOODCHEM.2011.02.011.
  129. Yang, Y., Xie, J., Li, J., Zhang, J., Zhang, X., Yao, Y., Wang, C., Niu, T., and Bakpa, E. P. (2022). Trehalose alleviates salt tolerance by improving photosynthetic performance and maintaining mineral ion homeostasis in tomato plants. Frontiers in Plant Science, 13, 974507, https://doi.org/10.3389/FPLS.2022.974507/BIBTEX.
  130. Zaman, L., Shafqat, W., and Jaskani, M. (2019). Effect of foliar spray of zinc sulphate and calcium carbonate on fruit quality of kinnow mandarin (Citrus reticulata Blanco). Journal of Global Innovations in Agricultural Sciences, 7, 157–161, https://doi.org/10.22194/jgiass/7.875.
  131. Zhu, F., Li, M., Sun, M., Jiang, X., and Qiao, F. (2022). Plant hormone signals regulate trehalose accumulation against osmotic stress in watermelon cells. Protoplasma, 259(5), 1351–1369, https://doi.org/10.1007/s00709-021-01715-0.
DOI: https://doi.org/10.2478/fhort-2025-0023 | Journal eISSN: 2083-5965 | Journal ISSN: 0867-1761
Language: English
Submitted on: Apr 7, 2025
Accepted on: Nov 1, 2025
Published on: Dec 12, 2025
Published by: Polish Society for Horticultural Sciences (PSHS)
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 M. S. Aboryia, Amr Elkelish, Lina M. Abu-Ziada, Mai M. Wahba, Abdulrahman Alhudhaibi, Mohamed S. Gawish, published by Polish Society for Horticultural Sciences (PSHS)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

AHEAD OF PRINT