Have a personal or library account? Click to login
Effect of biostimulants on growth and flowering of Tagetes erecta L. Cover

Effect of biostimulants on growth and flowering of Tagetes erecta L.

Open Access
|Oct 2025

References

  1. Abd El-Mageed, T. A., Semida, W. M., and Rady, M. M. (2017). Moringa leaf extract as biostimulant improves water use efficiency, physio-biochemical attributes of squash plants under deficit irrigation. Agricultural Water Management, 193, 46–54, https://doi.org/10.1016/j.agwat.2017.08.004.
  2. Abd El-Sadek, M., and Ahmed, E. (2022). Novel application of Spirulina platensis extract as an alternative to the expensive plant growth regulators on Capparis cartilaginea (Decne.). Al-Azhar Journal of Pharmaceutical Sciences, 66(2), 29–41, https://doi.org/10.21608/ajps.2022.268248.
  3. Abdel-Wahed, G. A., Ahmed, H. F. A., Imara, D. A., Baiuomy, M. A. M., Seleiman, M. F., and Naeem, K. (2024). Bio-and synthetic fertilizers for reducing root rot and wilt and improving growth and flowering characteristics of rose. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(1), 13397, https://doi.org/10.15835/nbha52113397.
  4. Acemi, A., Bayrak, B., Çakir, M., Demiryürek, E., Gün, E., El Gueddari, N. E., and Özen, F. (2018). Comparative analysis of the effects of chitosan and common plant growth regulators on in vitro propagation of Ipomoea purpurea (L.) Roth from nodal explants. In Vitro Cellular and Developmental Biology-Plant, 54, 537–544, https://doi.org/10.1007/s11627-018-9915-0.
  5. Al-Huqail, A. A., Kumar, P., Abou Fayssal, S., Adelodun, B., Širić, I., Goala, M., Choi, K. S., Taher, M. A., El-Kholy, A. S., and Eid, E. M. (2023). Sustainable use of sewage sludge for marigold (Tagetes erecta L.) cultivation: Experimental and predictive modeling studies on heavy metal accumulation. Horticulturae, 9(4), 447, https://doi.org/10.3390/horticulturae9040447.
  6. Ali, W., Khan, M. N., Nabi, G., Rahman, S., Sattar, S., Khan, M. F., Rahman, S., Zubair, S., Ain, Q., and Sabeeh, M. (2024). Effect of Moringa leaf extract and its solution application forms on growth and yield of okra. Sarhad Journal of Agriculture, 40(2), 407–417, https://doi.org/10.17582/journal.sja/2024/40.2.407.417.
  7. Aly, M. H. A., El-All, A., Azza, A. M., and Mostafa, S. S. M. (2008). Enhancement of sugar beet seed germination, plant growth, performance and biochemical components as contributed by algal extracellular products. Journal of Agricultural Chemistry and Biotechnology, 33(12), 8223–8242, https://doi.org/10.21608/jacb.2008.200754.
  8. Anwar, F., Latif, S., Ashraf, M., and Gilani, A. H. (2007). Moringa oleifera: A food plant with multiple medicinal uses. Phytotherapy Research, 21(1), 17–25, https://doi.org/10.1002/ptr.2027.
  9. Arif, Y., Bajguz, A., and Hayat, S. (2023). Moringa oleifera extract as a natural plant biostimulant. Journal of Plant Growth Regulation, 42(3), 1291– 1306, https://doi.org/10.1007/s00344-022-10891-0.
  10. Barna, D., Kisvarga, S., Kovács, S., Csatári, G., Tóth, I. O., Fári, M. G., Alshaal, T., and Bákonyi, N. (2021). Raw and fermented alfalfa brown juice induces changes in the germination and development of French marigold (Tagetes patula L.) plants. Plants (Basel, Switzerland), 10(6), 1076, https://doi.org/10.3390/plants10061076.
  11. Basuny, A. M., Arafat, S. M., and Soliman, H. M. (2013). Chemical analysis of olive and palm pollen: antioxidant and antimicrobial activation properties. Herald Journal of Agriculture and Food Science Research 2(3), 91–97.
  12. Bhatla, S. C., and Lal, M. A. (2023). Plant physiology, development and metabolism. New Delhi, India: Springer, http://doi.org/10.1007/978-981-99-5736-1.
  13. Bishr, M., and Desoukey, S. Y. (2012). Comparative study of the nutritional value of four types of Egyptian palm pollens. Journal of Pharmacy and Nutrition Sciences 2(1), 50–56, https://doi.org/10.6000/1927-5951.2012.02.01.7.
  14. Brett, C. T., and Waldron, K. W. (1996). Physiology and biochemistry of plant cell walls (Vol. 2). London, UK: Chapman & Hall.
  15. Bulgari, R., Franzoni, G., and Ferrante, A. (2019). Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy, 9(6), 306, https://doi.org/10.3390/agronomy9060306.
  16. Chaupoo, A. S., and Kumar, S. (2020). Integrated nutrient management in marigold (Tagetes erecta L.) cv. Pusa Narangi Gainda. International Journal of Current Microbiology and Applied Sciences, 9(5), 2927– 2939, https://doi.org/10.20546/ijcmas.2020.905.336.
  17. Chen, F., Li, Q., Su, Y., Lei, Y., and Zhang, C. (2023). Chitosan spraying enhances the growth, photosynthesis, and resistance of continuous Pinellia ternata and promotes its yield and quality. Molecules (Basel, Switzerland), 28(5), 2053, https://doi.org/10.3390/molecules28052053.
  18. Conrath, U. (2011). Molecular aspects of defence priming. Trends in Plant Science, 16(10), 524–531, https://doi.org/10.1016/j.tplants.2011.06.004.
  19. Di Sario, L., Boeri, P., Matus, J. T., and Pizzio, G. A. (2025). Plant biostimulants to enhance abiotic stress resilience in crops. International Journal of Molecular Sciences, 26(3), 1129, https://doi.org/10.3390/ijms26031129.
  20. Dole, J. M., and Wilkins, H. F. (1999). Floriculture: Principles and species. Upper Saddle River, NJ, USA: Prentice Hall.
  21. Drobek, M., Frąc, M., and Cybulska, J. (2019). Plant biostimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress—A review. Agronomy, 9(6), 335, https://doi.org/10.3390/agronomy9060335.
  22. Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3–14, https://doi.org/10.1016/j.scienta.2015.09.021.
  23. Dzung, N. A., and Thang, N. T. (2004). Effect of oligoglucosamine on the growth and development of peanut (Arachis hypogea L.). In: Proceedings of the 6th Asia-Pacific on Chitin, Chitosan Symposium Singapore.
  24. El Hadrami, A., Adam, L. R., El Hadrami, I., and Daayf, F. (2010). Chitosan in plant protection. Marine Drugs, 8(4), 968–987, https://doi.org/10.3390/md8040968.
  25. Elkinany, R. G., and Shehata, A. (2023). Effect of spraying some safe growth stimulants on growth and flowering of petunia axillaris under drought stress. Scientific Journal of Flowers and Ornamental Plants, 10(2), 109–135, https://doi.org/10.21608/sjfop.2023.206011.1020.
  26. Farooq, A., Khattak, A. M., Gul, G., Habib, W., Ahmad, S., Asghar, M., and Rashid, T. (2023). Effect of Moringa leaf extract on the performance of lettuce cultivars. Gesunde Pflanzen, 75(5), 1449–1459, https://doi.org/10.1007/s10343-023-00773-2.
  27. Farouk, A., Metwaly, A., Mohsen, M. (2015). Chemical composition and antioxidant activity of date palm pollen grains (Phoenix dactylifera L. palmae) essential oil for Siwe cultivar cultivated in Egypt. Middle East Journal of Applied Sciences 5(4), 945–949.
  28. Farouk, S., Mosa, A. A., Taha, A. A., and El-Gahmery, A. M. (2011). Protective effect of humic acid and chitosan on radish (Raphanus sativus, L. var. sativus) plants subjected to cadmium stress. Journal of Stress Physiology and Biochemistry, 7(2), 99–116.
  29. Fatima, N., Jamal, A., Huang, Z., Liaquat, R., Ahmad, B., Haider, R., Ali, M. I., Shoukat, T., Alothman, Z. A., and Ouladsmane, M. (2021). Extraction and chemical characterization of humic acid from nitric acid treated lignite and bituminous coal samples. Sustainability, 13(16), 8969, https://doi.org/10.3390/su13168969.
  30. Franzoni, G., Cocetta, G., Prinsi, B., Ferrante, A., and Espen, L. (2022). Biostimulants on crops: Their impact under abiotic stress conditions. Horticulturae, 8(3), 189, https://doi.org/10.3390/horticulturae8030189.
  31. Fu, X.-Q., Zhang, G.-L., Deng, L., and Dang, Y.-Y. (2019). Simultaneous extraction and enrichment of polyphenol and lutein from marigold (Tagetes erecta L.) flower by an enzyme-assisted ethanol/ammonium sulfate system. Food and Function, 10(1), 266–276, https://doi.org/10.1039/C8FO01941H.
  32. George, D., and Mallery, P. (2016). IBM SPSS statistics 23 step by step: A simple guide and reference. New York, USA: Routledge.
  33. Gharib, F. A. E. L., and Ahmed, E. Z. (2023). Spirulina platensis improves growth, oil content, and antioxidant activitiy of rosemary plant under cadmium and lead stress. Scientific Reports, 13(1), 8008, https://doi.org/10.1038/s41598-023-35210-5.
  34. Gopalakrishnan, L., Doriya, K., and Kumar, D. S. (2016). Moringa oleifera: A review on nutritive importance and its medicinal application. Food Science and Human Wellness, 5(2), 49–56, https://doi.org/10.1016/j.fshw.2016.04.001.
  35. Hadwiger, L. A. (2013). Multiple effects of chitosan on plant systems: Solid science or hype. Plant Science, 208, 42–49, https://doi.org/10.1016/j.plantsci.2013.03.002.
  36. Hamouda, R. A., Shehawy, M. A., Eldin, S. M. M., Albalwe, F. M., Albalwe, M. H. R., and Hussein, M. H. (2022). Protective role of Spirulina platensis liquid extract against salinity stress effects on Triticum aestivum L. Green Processing and Synthesis, 11(1), 648–658, https://doi.org/10.1515/gps-2022-0065.
  37. Hassan, H. M. M. (2011). Chemical composition and nutritional value of palm pollen grains. Global J Biotechnol Biochem, 6(1), 1–7.
  38. Howladar, S. M. (2014). A novel Moringa oleifera leaf extract can mitigate the stress effects of salinity and cadmium in bean (Phaseolus vulgaris L.) plants. Ecotoxicology and Environmental Safety, 100, 69–75, https://doi.org/10.1016/j.ecoenv.2013.11.020.
  39. Ibrahim, E. A., Ebrahim, N. E. S., and Mohamed, G. Z. (2023). Effect of water stress and foliar application of chitosan and glycine betaine on lettuce. Scientific Reports, 13(1), 17274, https://doi.org/10.1038/s41598-023-44470-5.
  40. Iqbal, J., Irshad, J., Bashir, S., Khan, S., Yousaf, M., and Shah, A. N. (2020). Comparative study of waterextracts of Moringa leaves and roots to improve the growth and yield of sunflower. South African Journal of Botany, 129, 221–224, https://doi.org/10.1016/j.sajb.2019.02.012.
  41. Khilji, S. A. M. W., Shan, T. S., Javed, A. J., Shoaib, O. A. T., and Riaz, A. (2024). Microbe assisted phytoremediation of heavy metal contaminated soil by using African marigold (Tagetes erecta L.). Plant Stress, 11, 100369, https://doi.org/10.1016/j.stress.2024.100369.
  42. Kisvarga, S., Farkas, D., Boronkay, G., Neményi, A., and Orlóci, L. (2022). Effects of biostimulants in horticulture, with emphasis on ornamental plant production. Agronomy, 12(5), 1043, https://doi.org/10.3390/agronomy12051043.
  43. Kumaraswamy, R. V., Kumari, S., Choudhary, R. C., Pal, A., Raliya, R., Biswas, P., and Saharan, V. (2018). Engineered chitosan based nanomaterials: Bioactivities, mechanisms and perspectives in plant protection and growth. International Journal of Biological Macromolecules, 113, 494–506, https://doi.org/10.1016/j.ijbiomac.2018.02.130.
  44. Kumar, S., Korra, T., Singh, U. B., Singh, S., and Bisen, K. (2022). Microalgal based biostimulants as alleviator of biotic and abiotic stresses in crop plants. In M. K. JHA (Ed.), New and future developments in microbial biotechnology and bioengineering (pp. 195–216). Amsterdam, Holandia: Elsevier, https://doi.org/10.1016/B978-0-323-91410-6.00014-4.
  45. Madanan, M. T., Shah, I. K., Varghese, G. K., and Kaushal, R. K. (2021). Application of Aztec Marigold (Tagetes erecta L.) for phytoremediation of heavy metal polluted lateritic soil. Environmental Chemistry and Ecotoxicology, 3, 17–22, https://doi.org/10.1016/j.enceco.2020.10.007.
  46. Mahjoub, D. R., and Allawi, M. M. (2022). The effect of bio-fertilizers and bio-stimulants on the growth and flowering of Chrysanthemum morifolium. Biochemical and Cellular Archives, 22(2), 17–22, https://doi.org/10.1016/j.enceco.2020.10.007.
  47. Maishanu, H. M., Mainasara, M. M., Yahaya, S., and Yunusa, A. (2017). The use of Moringa leaves extract as a plant growth hormone on cowpea (Vigna anguiculata). Path of Science, 3(12), 3001–3006, https://doi.org/10.22178/pos.29-4.
  48. Mashamaite, C. V., Ngcobo, B. L., Manyevere, A., Bertling, I., and Fawole, O. A. (2022). Assessing the usefulness of Moringa oleifera leaf extract as a biostimulant to supplement synthetic fertilizers: A review. Plants (Basel, Switzerland), 11(17), 2214, https://doi.org/10.3390/plants11172214.
  49. Nadeem, S. M., Ahmad, M., Zahir, Z. A., and Kharal, M. A. (2016). Role of phytohormones in stress tolerance of plants. In K. Hakeem and M. Akhtar (Eds), Plant, soil and microbes: Volume 2: Mechanisms and molecular interactions (pp. 385–421). Cham, Switzerland: Springer, https://doi.org/10.1007/978-3-319-29573-2_17.
  50. Nikkon, F., Saud, Z. A., Rahman, M. H., and Haque, M. E. (2003). In vitro antimicrobial activity of the compound isolated from chloroform extract of Moringa oleifera Lam. Pakistan Journal of Biological Sciences, 6(22), 1888–1890, https://doi.org/10.3923/pjbs.2003.1888.1890.
  51. Ningsih, S., and Sari, D. W. (2023). Effect of chitosan on chlorophyll content and phytotoxicity in Brassica juncea L. Techno: Jurnal Penelitian, 12(2), 90–98, https://doi.org/10.33387/tjp.v12i2.6639.
  52. Nouman, W., Siddiqui, M. T., Basra, S., and Maqsood, A. (2012). Moringa oleifera leaf extract: An innovative priming tool for rangeland grasses. Turkish Journal of Agriculture and Forestry, 36(1), 65–75, https://doi.org/10.3906/tar-1009-1261.
  53. Nweze, N. O., and Nwafor, F. I. (2014). Phytochemical, proximate and mineral composition of leaf extracts of Moringa oleifera Lam. from Nsukka, South-Eastern Nigeria. IOSR Journal of Pharmacy and Biological Sciences, 9(1), 99–103, https://doi.org/10.9790/3008-091699103.
  54. Palacio-Márquez, A., Ramírez-Estrada, C. A., Sanchez, E., Ojeda-Barrios, D. L., Chávez-Mendoza, C., Sida-Arreola, J. P., and PreciadoRangel, P. (2022). Use of biostimulant compounds in agriculture: Chitosan as a sustainable option for plant development. Notulae Scientia Biologicae, 14(1), 11124, https://www.notulaebiologicae.ro/index.php/nsb/article/view/11124/9453.
  55. Preeti, and Pooja, G. (2024). Effect of biostimulants on growth, flower yield and quality of marigold (Tagetes patula L.). International Journal of Advanced Biochemistry Research, 8(8), 93–95, https://doi.org/10.33545/26174693.2024.v8.i8b.1705.
  56. Rakkammal, K., Maharajan, T., Ceasar, S. A., and Ramesh, M. (2023). Biostimulants and their role in improving plant growth under drought and salinity. Cereal Research Communications, 51(1), 61–74, https://doi.org/10.1007/s42976-022-00316-6.
  57. Ronga, D., Biazzi, E., Parati, K., Carminati, D., Carminati, E., and Tava, A. (2019). Microalgal biostimulants and biofertilisers in crop productions. Agronomy, 9(4), 192, https://doi.org/10.3390/agronomy9040192.
  58. Russo, R., Poincelot, R. P., and Berlyn, G. P. (1993). The use of a commercial organic biostimulant for improved production of marigold cultivars. Journal of Home and Consumer Horticulture, 1(1), 83–93, https://doi.org/10.1300/J061v01n01_10.
  59. Salachna, P., and Zawadzińska, A. (2014). Effect of chitosan on plant growth, flowering and corms yield of potted freesia. Journal of Ecological Engineering, 15(3), 44–48, https://doi.org/10.12911/22998993/2913.
  60. Sanchez, M., Bernal-Castillo, J., Rozo, C., and Rodríguez, I. (2003). Spirulina (Arthrospira): An edible microorganism: A review. Universitas Scientiarum, 8(1), 7–24.
  61. Sara, K., Hossein, A., Masoud, S. J., and Hassan, M. (2012). Effects of water deficit and chitosan spraying on osmotic adjustment and soluble protein of cultivars castor bean (Ricinus communis L.). Journal of Stress Physiology and Biochemistry, 8(3), 160–169.
  62. Sardar, H., Nisar, A., Anjum, M. A., Naz, S., Ejaz, S., Ali, S., Javed, M. S., and Ahmad, R. (2021). Foliar spray of Moringa leaf extract improves growth and concentration of pigment, minerals and stevioside in stevia (Stevia rebaudiana Bertoni). Industrial Crops and Products, 166, 113485, https://doi.org/10.1016/j.indcrop.2021.113485.
  63. Savvides, A., Ali, S., Tester, M., and Fotopoulos, V. (2016). Chemical priming of plants against multiple abiotic stresses: Mission possible? Trends in Plant Science, 21(4), 329–340, https://doi.org/10.1016/j.tplants.2016.01.004.
  64. Sayed, D. R., Aly, M. H. A., and Sayed, G. H. (2018). Improving quality of date palm (Phoenix dactylifera L.) fruits CVS. Khalas and Sagae under different climate by spraying of date palm pollen grains extract. International Journal of Biosciences, 12, 56–69.
  65. Sharma, B., and Yadav, D. K. (2022). Metabolomics and network pharmacology in the exploration of the multi-targeted therapeutic approach of traditional medicinal plants. Plants (Basel, Switzerland), 11(23), 3243, https://doi.org/10.3390/plants11233243.
  66. Sharp, R. G. (2013). A review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. Agronomy, 3(4), 757–793, https://doi.org/10.3390/agronomy3040757.
  67. Shedeed, Z. A., Gheda, S., Elsanadily, S., Alharbi, K., and Osman, M. E. H. (2022). Spirulina platensis biofertilization for enhancing growth, photosynthetic capacity and yield of Lupinus luteus. Agriculture, 12(6), 781, https://doi.org/10.3390/agriculture12060781.
  68. Sheng, Z., Guo, A., Wang, J., and Chen, X. (2022). Preparation, physicochemical properties and antimicrobial activity of chitosan from fly pupae. Heliyon, 8(10), e11157, https://doi.org/10.1016/j.heliyon.2022.e11157.
  69. Siddhuraju, P., and Becker, K. (2003). Antioxidant properties of various solvent extractsof total phenolic constituents from three different agroclimatic origins ofdrumstick tree (Moringa oleifera Lam.) leaves. Journal of Agricultural and Food Chemistry 51, 2144–2155, https://doi.org/10.1021/jf020444+.
  70. Soni, R. A., Sudhakar, K., Rana, R. S., and Baredar, P. (2021). Food supplements formulated with Spirulina. In S. K. Mandotra, A. K. Upadhyay and A. S. Ahluwalia (Eds.), Algae: Multifarious applications for a sustainable world (pp. 201–226). Singapore: Springer.
  71. Soppelsa, S., Kelderer, M., Casera, C., Bassi, M., Robatscher, P., Matteazzi, A., and Andreotti, C. (2019). Foliar applications of biostimulants promote growth, yield and fruit quality of strawberry plants grown under nutrient limitation. Agronomy, 9(9), 483, https://doi.org/10.3390/agronomy9090483.
  72. Taha, R. S., Alharby, H. F., Bamagoos, A. A., Medani, R. A., and Rady, M. M. (2020). Elevating tolerance of drought stress in Ocimum basilicum using pollen grains extract; a natural biostimulant by regulation of plant performance and antioxidant defense system. South African Journal of Botany, 128, 42–53, https://doi.org/10.1016/j.sajb.2019.09.014.
  73. Taiz, L., Zeiger, E., Møller, I. M., and Murphy, A. (2015). Plant physiology and development. Sunderland, USA: Sinauer Associates.
  74. Tavares, A. R., Dos Santos, P. L. F., Zabotto, A. R., Do Nascimento, M. V. L., Jordão, H. W. C., Boas, R. L. V., and Broetto, F. (2020). Seaweed extract to enhance marigold seed germination and seedling establishment. SN Applied Sciences, 2(11), 1792, https://doi.org/10.1007/s42452-020-03603-3.
  75. Thumar, B. V., Dhingani, J. C., Butani, A. M., and Bhalu, V. B. (2016). Effect of integrated system of plant nutritional management on flower yield and quality of African marigold (T. erecta L.). Advances in Life Sciences, 5(2), 425–430.
  76. Yasmeen, A., Basra, S.m.a., Farooq, M., Rehman, H., Hussain, N., and Athar, H. R. (2013). Exogenous application of moringa leaf extract modulates the antioxidantenzyme system to improve wheat performance under saline conditions. Plant Growth Regulation 69, 225–233, https://doi.org/10.1007/s10725-012-9764-5.
  77. Yin, H., Fretté, X. C., Christensen, L. P., and Grevsen, K. (2012). Chitosan oligosaccharides promote the content of polyphenols in Greek oregano (Origanum vulgare ssp. hirtum). Journal of Agricultural and Food Chemistry, 60(1), 136–143, https://doi.org/10.1021/jf204376j.
  78. Zeljković, S., Parađiković, N., Maksimović, I., Teklić, T., and Tkalec Kojić, M. (2023). Growth and nutrient status of French marigold (Tagetes patula L.) under biostimulant application. New Zealand Journal of Crop and Horticultural Science, 51(4), 614–624, https://doi.org/10.1080/01140671.2022.2058024.
  79. Zhang, H., Zhang, S., Zhang, H., Chen, X., Liang, F., Qin, H., Zhang, Y., Cong, R., Xin, H., and Zhang, Z. (2020). Carotenoid metabolite and transcriptome dynamics underlying flower color in marigold (Tagetes erecta L.). Scientific Reports, 10, 16835, https://doi.org/10.1038/s41598-020-73859-7.
  80. Zulfiqar, F., Casadesús, A., Brockman, H., and Munné-Bosch, S. (2020). An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on Moringa leaf extracts. Plant Science, 295, 110194, https://doi.org/10.1016/j.plantsci.2019.110194.
DOI: https://doi.org/10.2478/fhort-2025-0016 | Journal eISSN: 2083-5965 | Journal ISSN: 0867-1761
Language: English
Page range: 209 - 226
Submitted on: Mar 3, 2025
Accepted on: Jul 27, 2025
Published on: Oct 10, 2025
Published by: Polish Society for Horticultural Sciences (PSHS)
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Nahed M. Rashed, E. A. El-Boraie, R. Kh. Darwesh, Zainab A. S. Soliman, published by Polish Society for Horticultural Sciences (PSHS)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.