Abd El-Mageed, T. A., Semida, W. M., and Rady, M. M. (2017). <em>Moringa</em> leaf extract as biostimulant improves water use efficiency, physio-biochemical attributes of squash plants under deficit irrigation. <em>Agricultural Water Management, 193</em>, 46–54, <a href="https://doi.org/10.1016/j.agwat.2017.08.004." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.agwat.2017.08.004.</a>
Abd El-Sadek, M., and Ahmed, E. (2022). Novel application of <em>Spirulina platensis</em> extract as an alternative to the expensive plant growth regulators on <em>Capparis cartilaginea</em> (Decne.). <em>Al-Azhar Journal of Pharmaceutical Sciences, 66</em>(2), 29–41, <a href="https://doi.org/10.21608/ajps.2022.268248." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.21608/ajps.2022.268248.</a>
Abdel-Wahed, G. A., Ahmed, H. F. A., Imara, D. A., Baiuomy, M. A. M., Seleiman, M. F., and Naeem, K. (2024). Bio-and synthetic fertilizers for reducing root rot and wilt and improving growth and flowering characteristics of rose. <em>Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52</em>(1), 13397, <a href="https://doi.org/10.15835/nbha52113397." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.15835/nbha52113397.</a>
Acemi, A., Bayrak, B., Çakir, M., Demiryürek, E., Gün, E., El Gueddari, N. E., and Özen, F. (2018). Comparative analysis of the effects of chitosan and common plant growth regulators on in vitro propagation of <em>Ipomoea purpurea</em> (L.) Roth from nodal explants. <em>In Vitro Cellular and Developmental Biology-Plant, 54</em>, 537–544, <a href="https://doi.org/10.1007/s11627-018-9915-0." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11627-018-9915-0.</a>
Al-Huqail, A. A., Kumar, P., Abou Fayssal, S., Adelodun, B., Širić, I., Goala, M., Choi, K. S., Taher, M. A., El-Kholy, A. S., and Eid, E. M. (2023). Sustainable use of sewage sludge for marigold (<em>Tagetes erecta</em> L.) cultivation: Experimental and predictive modeling studies on heavy metal accumulation. <em>Horticulturae, 9</em>(4), 447, <a href="https://doi.org/10.3390/horticulturae9040447." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/horticulturae9040447.</a>
Ali, W., Khan, M. N., Nabi, G., Rahman, S., Sattar, S., Khan, M. F., Rahman, S., Zubair, S., Ain, Q., and Sabeeh, M. (2024). Effect of <em>Moringa</em> leaf extract and its solution application forms on growth and yield of okra. <em>Sarhad Journal of Agriculture, 40</em>(2), 407–417, <a href="https://doi.org/10.17582/journal.sja/2024/40.2.407.417." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.17582/journal.sja/2024/40.2.407.417.</a>
Aly, M. H. A., El-All, A., Azza, A. M., and Mostafa, S. S. M. (2008). Enhancement of sugar beet seed germination, plant growth, performance and biochemical components as contributed by algal extracellular products. <em>Journal of Agricultural Chemistry and Biotechnology, 33</em>(12), 8223–8242, <a href="https://doi.org/10.21608/jacb.2008.200754." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.21608/jacb.2008.200754.</a>
Barna, D., Kisvarga, S., Kovács, S., Csatári, G., Tóth, I. O., Fári, M. G., Alshaal, T., and Bákonyi, N. (2021). Raw and fermented alfalfa brown juice induces changes in the germination and development of French marigold (<em>Tagetes patula</em> L.) plants. <em>Plants (Basel, Switzerland), 10</em>(6), 1076, <a href="https://doi.org/10.3390/plants10061076." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/plants10061076.</a>
Basuny, A. M., Arafat, S. M., and Soliman, H. M. (2013). Chemical analysis of olive and palm pollen: antioxidant and antimicrobial activation properties. <em>Herald Journal of Agriculture and Food Science Research 2</em>(3), 91–97.
Bhatla, S. C., and Lal, M. A. (2023). <em>Plant physiology, development and metabolism</em>. New Delhi, India: Springer, http://doi.org/<a href="https://doi.org/10.1007/978-981-99-5736-1." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-981-99-5736-1.</a>
Bishr, M., and Desoukey, S. Y. (2012). Comparative study of the nutritional value of four types of Egyptian palm pollens. <em>Journal of Pharmacy and Nutrition Sciences 2</em>(1), 50–56, <a href="https://doi.org/10.6000/1927-5951.2012.02.01.7." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.6000/1927-5951.2012.02.01.7.</a>
Chaupoo, A. S., and Kumar, S. (2020). Integrated nutrient management in marigold (<em>Tagetes erecta</em> L.) cv. Pusa Narangi Gainda. <em>International Journal of Current Microbiology and Applied Sciences, 9</em>(5), 2927– 2939, <a href="https://doi.org/10.20546/ijcmas.2020.905.336." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.20546/ijcmas.2020.905.336.</a>
Chen, F., Li, Q., Su, Y., Lei, Y., and Zhang, C. (2023). Chitosan spraying enhances the growth, photosynthesis, and resistance of continuous <em>Pinellia ternata</em> and promotes its yield and quality. <em>Molecules (Basel, Switzerland), 28</em>(5), 2053, <a href="https://doi.org/10.3390/molecules28052053." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/molecules28052053.</a>
Di Sario, L., Boeri, P., Matus, J. T., and Pizzio, G. A. (2025). Plant biostimulants to enhance abiotic stress resilience in crops. <em>International Journal of Molecular Sciences, 26</em>(3), 1129, <a href="https://doi.org/10.3390/ijms26031129." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijms26031129.</a>
Drobek, M., Frąc, M., and Cybulska, J. (2019). Plant biostimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress—A review. <em>Agronomy, 9</em>(6), 335, <a href="https://doi.org/10.3390/agronomy9060335." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/agronomy9060335.</a>
Dzung, N. A., and Thang, N. T. (2004). Effect of oligoglucosamine on the growth and development of peanut (Arachis hypogea L.). In: <em>Proceedings of the 6th Asia-Pacific on Chitin, Chitosan Symposium Singapore</em>.
El Hadrami, A., Adam, L. R., El Hadrami, I., and Daayf, F. (2010). Chitosan in plant protection. <em>Marine Drugs, 8</em>(4), 968–987, <a href="https://doi.org/10.3390/md8040968." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/md8040968.</a>
Elkinany, R. G., and Shehata, A. (2023). Effect of spraying some safe growth stimulants on growth and flowering of petunia axillaris under drought stress. <em>Scientific Journal of Flowers and Ornamental Plants, 10</em>(2), 109–135, <a href="https://doi.org/10.21608/sjfop.2023.206011.1020." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.21608/sjfop.2023.206011.1020.</a>
Farooq, A., Khattak, A. M., Gul, G., Habib, W., Ahmad, S., Asghar, M., and Rashid, T. (2023). Effect of <em>Moringa</em> leaf extract on the performance of lettuce cultivars. <em>Gesunde Pflanzen, 75</em>(5), 1449–1459, <a href="https://doi.org/10.1007/s10343-023-00773-2." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10343-023-00773-2.</a>
Farouk, A., Metwaly, A., Mohsen, M. (2015). Chemical composition and antioxidant activity of date palm pollen grains (<em>Phoenix dactylifera</em> L. <em>palmae</em>) essential oil for Siwe cultivar cultivated in Egypt. <em>Middle East Journal of Applied Sciences</em> 5(4), 945–949.
Farouk, S., Mosa, A. A., Taha, A. A., and El-Gahmery, A. M. (2011). Protective effect of humic acid and chitosan on radish (<em>Raphanus sativus</em>, L. var. sativus) plants subjected to cadmium stress. <em>Journal of Stress Physiology and Biochemistry, 7</em>(2), 99–116.
Fatima, N., Jamal, A., Huang, Z., Liaquat, R., Ahmad, B., Haider, R., Ali, M. I., Shoukat, T., Alothman, Z. A., and Ouladsmane, M. (2021). Extraction and chemical characterization of humic acid from nitric acid treated lignite and bituminous coal samples. <em>Sustainability, 13</em>(16), 8969, <a href="https://doi.org/10.3390/su13168969." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/su13168969.</a>
Fu, X.-Q., Zhang, G.-L., Deng, L., and Dang, Y.-Y. (2019). Simultaneous extraction and enrichment of polyphenol and lutein from marigold (<em>Tagetes erecta</em> L.) flower by an enzyme-assisted ethanol/ammonium sulfate system. <em>Food and Function, 10</em>(1), 266–276, <a href="https://doi.org/10.1039/C8FO01941H." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1039/C8FO01941H.</a>
Gharib, F. A. E. L., and Ahmed, E. Z. (2023). <em>Spirulina platensis</em> improves growth, oil content, and antioxidant activitiy of rosemary plant under cadmium and lead stress. <em>Scientific Reports, 13</em>(1), 8008, <a href="https://doi.org/10.1038/s41598-023-35210-5." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41598-023-35210-5.</a>
Gopalakrishnan, L., Doriya, K., and Kumar, D. S. (2016). <em>Moringa oleifera</em>: A review on nutritive importance and its medicinal application. <em>Food Science and Human Wellness, 5</em>(2), 49–56, <a href="https://doi.org/10.1016/j.fshw.2016.04.001." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.fshw.2016.04.001.</a>
Hamouda, R. A., Shehawy, M. A., Eldin, S. M. M., Albalwe, F. M., Albalwe, M. H. R., and Hussein, M. H. (2022). Protective role of <em>Spirulina platensis</em> liquid extract against salinity stress effects on <em>Triticum aestivum L. Green Processing and Synthesis, 11</em>(1), 648–658, <a href="https://doi.org/10.1515/gps-2022-0065." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1515/gps-2022-0065.</a>
Howladar, S. M. (2014). A novel <em>Moringa oleifera</em> leaf extract can mitigate the stress effects of salinity and cadmium in bean (<em>Phaseolus vulgaris</em> L.) plants. <em>Ecotoxicology and Environmental Safety, 100</em>, 69–75, <a href="https://doi.org/10.1016/j.ecoenv.2013.11.020." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ecoenv.2013.11.020.</a>
Ibrahim, E. A., Ebrahim, N. E. S., and Mohamed, G. Z. (2023). Effect of water stress and foliar application of chitosan and glycine betaine on lettuce. <em>Scientific Reports, 13</em>(1), 17274, <a href="https://doi.org/10.1038/s41598-023-44470-5." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41598-023-44470-5.</a>
Iqbal, J., Irshad, J., Bashir, S., Khan, S., Yousaf, M., and Shah, A. N. (2020). Comparative study of waterextracts of <em>Moringa</em> leaves and roots to improve the growth and yield of sunflower. <em>South African Journal of Botany, 129</em>, 221–224, <a href="https://doi.org/10.1016/j.sajb.2019.02.012." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.sajb.2019.02.012.</a>
Khilji, S. A. M. W., Shan, T. S., Javed, A. J., Shoaib, O. A. T., and Riaz, A. (2024). Microbe assisted phytoremediation of heavy metal contaminated soil by using African marigold (<em>Tagetes erecta</em> L.). <em>Plant Stress, 11</em>, 100369, <a href="https://doi.org/10.1016/j.stress.2024.100369." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.stress.2024.100369.</a>
Kisvarga, S., Farkas, D., Boronkay, G., Neményi, A., and Orlóci, L. (2022). Effects of biostimulants in horticulture, with emphasis on ornamental plant production. <em>Agronomy, 12</em>(5), 1043, <a href="https://doi.org/10.3390/agronomy12051043." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/agronomy12051043.</a>
Kumaraswamy, R. V., Kumari, S., Choudhary, R. C., Pal, A., Raliya, R., Biswas, P., and Saharan, V. (2018). Engineered chitosan based nanomaterials: Bioactivities, mechanisms and perspectives in plant protection and growth. <em>International Journal of Biological Macromolecules, 113</em>, 494–506, <a href="https://doi.org/10.1016/j.ijbiomac.2018.02.130." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijbiomac.2018.02.130.</a>
Kumar, S., Korra, T., Singh, U. B., Singh, S., and Bisen, K. (2022). Microalgal based biostimulants as alleviator of biotic and abiotic stresses in crop plants. In M. K. JHA (Ed.), <em>New and future developments in microbial biotechnology and bioengineering</em> (pp. 195–216). Amsterdam, Holandia: Elsevier, <a href="https://doi.org/10.1016/B978-0-323-91410-6.00014-4." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B978-0-323-91410-6.00014-4.</a>
Madanan, M. T., Shah, I. K., Varghese, G. K., and Kaushal, R. K. (2021). Application of Aztec Marigold (<em>Tagetes erecta</em> L.) for phytoremediation of heavy metal polluted lateritic soil. <em>Environmental Chemistry and Ecotoxicology, 3</em>, 17–22, <a href="https://doi.org/10.1016/j.enceco.2020.10.007." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enceco.2020.10.007.</a>
Mahjoub, D. R., and Allawi, M. M. (2022). The effect of bio-fertilizers and bio-stimulants on the growth and flowering of <em>Chrysanthemum morifolium. Biochemical and Cellular Archives, 22</em>(2), 17–22, <a href="https://doi.org/10.1016/j.enceco.2020.10.007." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enceco.2020.10.007.</a>
Maishanu, H. M., Mainasara, M. M., Yahaya, S., and Yunusa, A. (2017). The use of <em>Moringa</em> leaves extract as a plant growth hormone on cowpea (<em>Vigna anguiculata</em>). <em>Path of Science, 3</em>(12), 3001–3006, <a href="https://doi.org/10.22178/pos.29-4." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.22178/pos.29-4.</a>
Mashamaite, C. V., Ngcobo, B. L., Manyevere, A., Bertling, I., and Fawole, O. A. (2022). Assessing the usefulness of <em>Moringa oleifera</em> leaf extract as a biostimulant to supplement synthetic fertilizers: A review. <em>Plants (Basel, Switzerland), 11</em>(17), 2214, <a href="https://doi.org/10.3390/plants11172214." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/plants11172214.</a>
Nadeem, S. M., Ahmad, M., Zahir, Z. A., and Kharal, M. A. (2016). Role of phytohormones in stress tolerance of plants. In K. Hakeem and M. Akhtar (Eds), <em>Plant, soil and microbes: Volume 2: Mechanisms and molecular interactions</em> (pp. 385–421). Cham, Switzerland: Springer, <a href="https://doi.org/10.1007/978-3-319-29573-2_17." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-3-319-29573-2_17.</a>
Nikkon, F., Saud, Z. A., Rahman, M. H., and Haque, M. E. (2003). <em>In vitro</em> antimicrobial activity of the compound isolated from chloroform extract of <em>Moringa oleifera</em> Lam. <em>Pakistan Journal of Biological Sciences, 6</em>(22), 1888–1890, <a href="https://doi.org/10.3923/pjbs.2003.1888.1890." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3923/pjbs.2003.1888.1890.</a>
Ningsih, S., and Sari, D. W. (2023). Effect of chitosan on chlorophyll content and phytotoxicity in <em>Brassica juncea</em> L. <em>Techno: Jurnal Penelitian, 12</em>(2), 90–98, <a href="https://doi.org/10.33387/tjp.v12i2.6639." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.33387/tjp.v12i2.6639.</a>
Nouman, W., Siddiqui, M. T., Basra, S., and Maqsood, A. (2012). <em>Moringa oleifera</em> leaf extract: An innovative priming tool for rangeland grasses. <em>Turkish Journal of Agriculture and Forestry, 36</em>(1), 65–75, <a href="https://doi.org/10.3906/tar-1009-1261." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3906/tar-1009-1261.</a>
Nweze, N. O., and Nwafor, F. I. (2014). Phytochemical, proximate and mineral composition of leaf extracts of <em>Moringa oleifera</em> Lam. from Nsukka, South-Eastern Nigeria. <em>IOSR Journal of Pharmacy and Biological Sciences, 9</em>(1), 99–103, <a href="https://doi.org/10.9790/3008-091699103." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.9790/3008-091699103.</a>
Palacio-Márquez, A., Ramírez-Estrada, C. A., Sanchez, E., Ojeda-Barrios, D. L., Chávez-Mendoza, C., Sida-Arreola, J. P., and PreciadoRangel, P. (2022). Use of biostimulant compounds in agriculture: Chitosan as a sustainable option for plant development. <em>Notulae Scientia Biologicae, 14</em>(1), 11124, https://www.notulaebiologicae.ro/index.php/nsb/article/view/11124/9453.
Preeti, and Pooja, G. (2024). Effect of biostimulants on growth, flower yield and quality of marigold (<em>Tagetes patula</em> L.). <em>International Journal of Advanced Biochemistry Research, 8</em>(8), 93–95, <a href="https://doi.org/10.33545/26174693.2024.v8.i8b.1705." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.33545/26174693.2024.v8.i8b.1705.</a>
Rakkammal, K., Maharajan, T., Ceasar, S. A., and Ramesh, M. (2023). Biostimulants and their role in improving plant growth under drought and salinity. <em>Cereal Research Communications, 51</em>(1), 61–74, <a href="https://doi.org/10.1007/s42976-022-00316-6." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s42976-022-00316-6.</a>
Ronga, D., Biazzi, E., Parati, K., Carminati, D., Carminati, E., and Tava, A. (2019). Microalgal biostimulants and biofertilisers in crop productions. <em>Agronomy, 9</em>(4), 192, <a href="https://doi.org/10.3390/agronomy9040192." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/agronomy9040192.</a>
Russo, R., Poincelot, R. P., and Berlyn, G. P. (1993). The use of a commercial organic biostimulant for improved production of marigold cultivars. <em>Journal of Home and Consumer Horticulture, 1</em>(1), 83–93, <a href="https://doi.org/10.1300/J061v01n01_10." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1300/J061v01n01_10.</a>
Salachna, P., and Zawadzińska, A. (2014). Effect of chitosan on plant growth, flowering and corms yield of potted freesia. <em>Journal of Ecological Engineering, 15</em>(3), 44–48, <a href="https://doi.org/10.12911/22998993/2913." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.12911/22998993/2913.</a>
Sanchez, M., Bernal-Castillo, J., Rozo, C., and Rodríguez, I. (2003). <em>Spirulina</em> (Arthrospira): An edible microorganism: A review. <em>Universitas Scientiarum, 8</em>(1), 7–24.
Sara, K., Hossein, A., Masoud, S. J., and Hassan, M. (2012). Effects of water deficit and chitosan spraying on osmotic adjustment and soluble protein of cultivars castor bean (<em>Ricinus communis</em> L.). <em>Journal of Stress Physiology and Biochemistry, 8</em>(3), 160–169.
Sardar, H., Nisar, A., Anjum, M. A., Naz, S., Ejaz, S., Ali, S., Javed, M. S., and Ahmad, R. (2021). Foliar spray of <em>Moringa</em> leaf extract improves growth and concentration of pigment, minerals and stevioside in stevia (<em>Stevia rebaudiana</em> Bertoni). <em>Industrial Crops and Products, 166</em>, 113485, <a href="https://doi.org/10.1016/j.indcrop.2021.113485." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.indcrop.2021.113485.</a>
Savvides, A., Ali, S., Tester, M., and Fotopoulos, V. (2016). Chemical priming of plants against multiple abiotic stresses: Mission possible? <em>Trends in Plant Science, 21</em>(4), 329–340, <a href="https://doi.org/10.1016/j.tplants.2016.01.004." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.tplants.2016.01.004.</a>
Sayed, D. R., Aly, M. H. A., and Sayed, G. H. (2018). Improving quality of date palm (<em>Phoenix dactylifera</em> L.) fruits CVS. Khalas and Sagae under different climate by spraying of date palm pollen grains extract. <em>International Journal of Biosciences, 12</em>, 56–69.
Sharma, B., and Yadav, D. K. (2022). Metabolomics and network pharmacology in the exploration of the multi-targeted therapeutic approach of traditional medicinal plants. <em>Plants (Basel, Switzerland), 11</em>(23), 3243, <a href="https://doi.org/10.3390/plants11233243." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/plants11233243.</a>
Sharp, R. G. (2013). A review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. <em>Agronomy, 3</em>(4), 757–793, <a href="https://doi.org/10.3390/agronomy3040757." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/agronomy3040757.</a>
Shedeed, Z. A., Gheda, S., Elsanadily, S., Alharbi, K., and Osman, M. E. H. (2022). <em>Spirulina</em> platensis biofertilization for enhancing growth, photosynthetic capacity and yield of <em>Lupinus luteus. Agriculture, 12</em>(6), 781, <a href="https://doi.org/10.3390/agriculture12060781." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/agriculture12060781.</a>
Siddhuraju, P., and Becker, K. (2003). Antioxidant properties of various solvent extractsof total phenolic constituents from three different agroclimatic origins ofdrumstick tree (Moringa oleifera Lam.) leaves. <em>Journal of Agricultural and Food Chemistry 51</em>, 2144–2155, <a href="https://doi.org/10.1021/jf020444+." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/jf020444+.</a>
Soni, R. A., Sudhakar, K., Rana, R. S., and Baredar, P. (2021). Food supplements formulated with <em>Spirulina</em>. In S. K. Mandotra, A. K. Upadhyay and A. S. Ahluwalia (Eds.), <em>Algae: Multifarious applications for a sustainable world</em> (pp. 201–226). Singapore: Springer.
Soppelsa, S., Kelderer, M., Casera, C., Bassi, M., Robatscher, P., Matteazzi, A., and Andreotti, C. (2019). Foliar applications of biostimulants promote growth, yield and fruit quality of strawberry plants grown under nutrient limitation. <em>Agronomy, 9</em>(9), 483, <a href="https://doi.org/10.3390/agronomy9090483." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/agronomy9090483.</a>
Taha, R. S., Alharby, H. F., Bamagoos, A. A., Medani, R. A., and Rady, M. M. (2020). Elevating tolerance of drought stress in <em>Ocimum basilicum</em> using pollen grains extract; a natural biostimulant by regulation of plant performance and antioxidant defense system. <em>South African Journal of Botany, 128</em>, 42–53, <a href="https://doi.org/10.1016/j.sajb.2019.09.014." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.sajb.2019.09.014.</a>
Tavares, A. R., Dos Santos, P. L. F., Zabotto, A. R., Do Nascimento, M. V. L., Jordão, H. W. C., Boas, R. L. V., and Broetto, F. (2020). Seaweed extract to enhance marigold seed germination and seedling establishment. <em>SN Applied Sciences, 2</em>(11), 1792, <a href="https://doi.org/10.1007/s42452-020-03603-3." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s42452-020-03603-3.</a>
Thumar, B. V., Dhingani, J. C., Butani, A. M., and Bhalu, V. B. (2016). Effect of integrated system of plant nutritional management on flower yield and quality of African marigold (<em>T. erecta</em> L.). <em>Advances in Life Sciences, 5</em>(2), 425–430.
Yasmeen, A., Basra, S.m.a., Farooq, M., Rehman, H., Hussain, N., and Athar, H. R. (2013). Exogenous application of moringa leaf extract modulates the antioxidantenzyme system to improve wheat performance under saline conditions. Plant Growth Regulation 69, 225–233, <a href="https://doi.org/10.1007/s10725-012-9764-5." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10725-012-9764-5.</a>
Zeljković, S., Parađiković, N., Maksimović, I., Teklić, T., and Tkalec Kojić, M. (2023). Growth and nutrient status of French marigold (<em>Tagetes patula</em> L.) under biostimulant application. <em>New Zealand Journal of Crop and Horticultural Science, 51</em>(4), 614–624, <a href="https://doi.org/10.1080/01140671.2022.2058024." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/01140671.2022.2058024.</a>
Zulfiqar, F., Casadesús, A., Brockman, H., and Munné-Bosch, S. (2020). An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on <em>Moringa</em> leaf extracts. <em>Plant Science, 295</em>, 110194, <a href="https://doi.org/10.1016/j.plantsci.2019.110194." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.plantsci.2019.110194.</a>