References
- Abdullakasim, S., Kongpaisan, P., Thongjang, P., and Saradhuldhat, P. (2018). Physiological responses of potted Dendrobium orchid to salinity stress. Horticulture, Environment, and Biotechnology, 59(4), 491–498, https://doi.org/10.1007/s13580-018-0057-4.
- Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., and Hernandez, J. A. (2017). Plant responses to salt stress: Adaptive mechanisms. Agronomy, 7(1), 18, https://doi.org/10.3390/agronomy7010018.
- An, H., Zhu, Q., Pei, W., Fan, J., Liang, Y., Cui, Y., Lv, N., and Wang, W. (2016). Whole-transcriptome selection and evaluation of internal reference genes for expression analysis in protocorm development of Dendrobium officinale Kimura et Migo. PLoS ONE, 11(11), 1–19, https://doi.org/10.1371/journal.pone.0163478.
- Arzani, A., and Mirodjagh, S. S. (1999). Response of durum wheat cultivars to immature embryo culture, callus induction and in vitro salt stress. Plant Cell, Tissue and Organ Culture, 58(1), 67–72, https://doi.org/10.1023/A:1006309718575.
- Ashraf, M., and Harris, P. J. C. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica, 51(2), 163–190, https://doi.org/10.1007/s11099-013-0021-6.
- Balasubramaniam, T., Shen, G., Esmaeili, N., and Zhang, H. (2023). Plants’ response mechanisms to salinity stress. Plants (Basel, Swizerland), 12(12), 2253, https://doi.org/10.3390/plants12122253.
- Baranova, E. N., and Gulevich, A. A. (2021). Asymmetry of plant cell divisions under salt stress. Symmetry, 13(10), 1811, https://doi.org/10.3390/sym13101811.
- Bednarek, P. T., and Orłowska, R. (2020). Plant tissue culture environment as a switch-key of (epi)genetic changes. Plant Cell, Tissue and Organ Culture, 140(2), 245–257, https://doi.org/10.1007/s11240-019-01724-1.
- Boussora, F., Triki, T., Bennani, L., Bagues, M., Ben Ali, S., Ferchichi, A., Ngaz, K., and Guasmi, F. (2024). Mineral accumulation, relative water content and gas exchange are the main physiological regulating mechanisms to cope with salt stress in barley. Scientific Reports, 14, 14931, https://doi.org/10.1038/s41598-024-65967-5.
- Burssens, S., Himanen, K., Van De Cotte, B., Beeckman, T., Van Montagu, M., Inzé, D., and Verbruggen, N. (2000). Expression of cell cycle regulatory genes and morphological alterations in response to salt stress in Arabidopsis thaliana. Planta, 211, 632–640, https://doi.org/10.1007/s004250000334.
- Cardoso, J. C., Zanello, C. A., and Chen, J. T. (2020). An overview of orchid protocorm-like bodies: Mass propagation, biotechnology, molecular aspects, and breeding. International Journal of Molecular Sciences, 21(3), 985, https://doi.org/10.3390/ijms21030985.
- Chiewchookul, N. (2018). Water salinity effects on growth and flower quality of Vanda 'Jai Ruk Pink’ and Dendrobium Sonia 'Earsakul'. MS thesis. Bangkok, Thailand: Kasetsart University.
- Choi, D., Cho, H. T., and Lee, Y. (2006). Expansins: Expanding importance in plant growth and development. Physiologia Plantarum, 126(4), 511–518, https://doi.org/10.1111/j.1399-3054.2006.00612.x.
- Chun, H. J., Baek, D., Jin, B. J., Cho, H. M., Park, M. S., Lee, S. H., Lim, L. H., Cha, Y. J., Bae, D. W., Kim, S. T., Yun, D. J., and Kim, M. C. (2021). Microtubule dynamics plays a vital role in plant adaptation and tolerance to salt stress. International Journal of Molecular Sciences, 22(11), 5957, https://doi.org/10.3390/ijms22115957.
- El-Esawi, M. A., Alaraidh, I. A., Alsahli, A. A., Alzahrani, S. M., Ali, H. M., Alayafi, A. A., and Ahmad, M. (2018). Serratia liquefaciens KM4 improves salt stress tolerance in maize by regulating redox potential, ion homeostasis, leaf gas exchange and stress-related gene expression. International Journal of Molecular Sciences, 19(11), 3310, https://doi.org/10.3390/ijms19113310.
- El Sayed, A. I., El-Hamahmy, M. A. M., Rafudeen, M. S., And Ebrahim, M. K. H. (2019). Exogenous spermidine enhances expression of Calvin cycle genes and photosynthetic efficiency in sweet sorghum seedlings under salt stress. Biologia Plantarum, 63, 511–518, https://doi.org/10.32615/bp.2019.046.
- El Sayed, A. I., Mohamed, A. H., Rafudeen, M. S., Omar, A. A., Awad, M. F., and Mansour, E. (2022). Polyamines mitigate the destructive impacts of salinity stress by enhancing photosynthetic capacity, antioxidant defense system, and upregulation of Calvincycle-related genes in rapeseed (Brassica napus L.). Saudi Journal of Biological Sciences, 29(5), 3675–3686, https://doi.org/10.1016/J.SJBS.2022.02.053.
- Gandonou, C. B., Errabii, T., Abrini, J., Idaomar, M., and Senhaji, N. S. (2006). Selection of callus cultures of sugarcane (Saccharum sp.) tolerant to NaCl and their response to salt stress. Plant Cell, Tissue and Organ Culture, 87, 9–16, https://doi.org/10.1007/s11240-006-9113-3.
- Heydarizad, M., Pumijumnong, N., Mansourian, D., Anbaran, E. D., and Minaei, M. (2023). The deterioration of groundwater quality by seawater intrusion in the Chao Phraya River Basin, Thailand. Environmental Monitoring and Assessment, 195(3), 424, https://doi.org/10.1007/S10661-023-11023-0.
- Hniličková, H., Hnilička, F., Martinková, J., and kraus, K. (2017). Effects of salt stress on water status, photosynthesis and chlorophyll fluorescence of rocket. Plant, Soil and Environment, 63(8), 362–367, https://doi.org/10.17221/398/2017-PSE.
- Hniličková, H., Hnilička, F., Orsák, M., and Hejnák, V. (2019). Effect of salt stress on growth, electrolyte leakage, Na+ and K+ content in selected plant species. Plant, Soil and Environment, 65(2), 90–96, https://doi.org/10.17221/620/2018-PSE.
- Horáková-Brazdilová, P., Fojtová, M., vytras, k., and Fojta, M. (2008). Enzyme-linked electrochemical detection of PCR-amplified nucleotide sequences using disposable screen-printed sensors. Applications in gene expression monitoring. Sensors, 8(1), 193–210, https://doi.org/10.3390/s8010193.
- Hsiao, A. S., and Huang, J. Y. (2023). Microtubule regulation in plants: From morphological development to stress adaptation. Biomolecules, 13(4), 627, https://doi.org/10.3390/biom13040627.
- Htwe, N. N., Maziah, M., Ling, H. C., Zaman, F. Q., and Zain, A. M. (2011). Responses of some selected Malaysian rice genotypes to callus induction under in vitro salt stress. African Journal of Biotechnology, 10(3), 350–362, https://www.ajol.info/index.php/ajb/article/view/92226.
- Ismail, A. M., and Horie, T. (2017). Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annual Review of Plant Biology, 68, 405–434, https://doi.org/10.1146/ANNUREV-ARPLANT-042916-040936.
- Jamil, M., Rehman, S., and Rha, E. S. (2007). Salinity effect on plant growth, PSII photochemistry and chlorophyll content in sugar beet (Beta vulgaris L.) and cabbage (Brassica oleracea capitata L.). Pakistan Journal of Botany, 39(3), 753–760, https://pakbs.org/pjbot/PDFs/39(3)/PJB39(3)753.pdf.
- Johansen, D. A. (1940). Plant microtechnique. New York, USA: McGraw-Hill Book Company.
- Khamtae, P., Boonchai, D., Kasemsap, P., and Boonkorkaew, P. (2020). In vitro salt tolerance of plantlets in Dendrobium Sonia 'Earsakul'. Agricultural Science Journal, 51(1), 22–35.https://li01.tci-thaijo.org/index.php/ASJ/article/view/248632/170019.
- Khamtae, P., Boonkorkaew, P., and Boonchai, D. (2018). Effect of sodium chloride on in vitro protocorm-like bodies multiplication of two Dendrobium cultivars. Agricultural Science Journal, 49(1), 322–325.
- Kim, D., Jeon, S. J., Yanders, S., Park, S. C., Kim, H. S., and Kim, S. (2022). MYB3 plays an important role in lignin and anthocyanin biosynthesis under salt stress condition in Arabidopsis. Plant Cell Reports, 41(7), 1549–1560, https://doi.org/10.1007/S00299-022-02878-7.
- Kuehnle, A. R. (2007). Orchids: Dendrobium. In N. O. Anderson (Ed.), Flower breeding and genetics: Issues, challenges and opportunities for the 21st Century (pp. 539–560). Dordrecht, Netherlands: Springer, https://doi.org/10.1007/978-1-4020-4428-1_20.
- Kumar, K., Kumar, M., Kim, S. R., Ryu, H., and Cho, Y. G. (2013). Insights into genomics of salt stress response in rice. Rice, 6(1), 27, https://doi.org/10.1186/1939-8433-6-27.
- Kumar, S., Li, G., Yang, J., Huang, X., Ji, Q., Liu, Z., Ke, W., and Hou, H. (2021). Effect of salt stress on growth, physiological parameters, and ionic concentration of water dropwort (Oenanthe javanica) cultivars. Frontiers in Plant Science, 12, 660409, https://doi.org/10.3389/fpls.2021.660409.
- Lee, Y. I., Hsu, S. T., and Yeung, E. C. (2013). Orchid protocorm-like bodies are somatic embryos. American Journal of Botany, 100(11), 2121–2131, https://doi.org/10.3732/ajb.1300193.
- Ling, H., Zeng, X., and Guo, S. (2016). Functional insights into the late embryogenesis abundant (LEA) protein family from Dendrobium officinale (Orchidaceae) using an Escherichia coli system. Scientific Reports, 6, 39693, https://doi.org/10.1038/srep39693.
- Li, Y., Tian, B., Wang, Y., Wang, J., Zhang, H., Wang, L., Sun, G., Yu, Y., and Zhang, H. (2022). The transcription factor MYB37 positively regulates photosynthetic inhibition and oxidative damage in Arabidopsis leaves under salt stress. Frontiers in Plant Science, 13, 943153, https://doi.org/10.3389/fpls.2022.943153.
- Liu, C., Fan, H., Zhang, J., Wu, J., Zhou, M., Cao, F., Tao, G., and Zhou, X. (2024). Combating browning: Mechanisms and management strategies in in vitro culture of economic woody plants. Forestry Research, 4, e032, https://doi.org/10.48130/forres-0024-0026.
- Lutts, S., Kinet, J. M., and Bouharmont, J. (1995). Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. Journal of Experimental Botany, 46(12), 1843–1852, https://doi.org/10.1093/JXB/46.12.1843.
- Majeed, A., and Muhammad, Z. (2019). Salinity: A major agricultural problem – Causes, impacts on crop productivity and management strategies. In M. Hasanuzzaman, K. Hakeem, K. Nahar and H. Alharby (Eds.), Plant abiotic stress tolerance: Agronomic, molecular and biotechnological approaches (pp. 83–99). Cham, Switzerland: Springer Nature Switzerland AG, https://doi.org/10.1007/978-3-030-06118-0_3.
- Moran, R., and Porath, D. (1980). Chlorophyll determination in intact tissues using N, N-dimethylformamide. Plant Physiology, 65(3), 478–479, https://doi.org/10.1104/PP.65.3.478.
- Nopun, P., Swangpol, S. C., Jenjittikul, T., Viboonjun, U., and Kermanee, P. (2025). Anatomical and histochemical studies of foetid-odor emission osmophores on the labella of two Orchidantha (Lowiaceae) species. Taiwania, 70(1), 37–49, https://doi.org/10.6165/tai.2025.70.37.
- Obsuwan, K., Deesubin, P., Tongam, A., and Juneenat, O. (2021). Influence of paclobutrazol on growth of Dendrobium 'Sonia Jo Daeng' under salt stress condition in tissue culture. Science, Engineering and Health Studies, 15, 21030001, https://doi.org/10.14456/sehs.2021.3.
- Obsuwan, K., Seraypheap, K., and Thepsithar, C. (2019). Effects of calcium silicate and proline-induced salt tolerance on the in vitro propagation of Dendrobium Sonia 'Red Jo'. Acta Horticulturae, 1262, 87–92, https://doi.org/10.17660/ActaHortic.2019.1262.13.
- Pastuszak, J., dziurka, M., Hornyák, M., szczerba, A., kopeć, P., and Płażek, A. (2022). Physiological and biochemical parameters of salinity resistance of three durum wheat genotypes. International Journal of Molecular Sciences, 23(15), 8397, https://doi.org/10.3390/IJMS23158397.
- Phang, T. H., Shao, G., and Lam, H. M. (2008). Salt tolerance in soybean. Journal of Integrative Plant Biology, 50(10), 1196–1212, https://doi.org/10.1111/J.1744-7909.2008.00760.X.
- Porra, R. J., Thompson, W. A., and Kriedemann, P. E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta - Bioenergetics, 975(3), 384–394, https://doi.org/10.1016/S0005-2728(89)80347-0.
- Rout, G. R., Mohapatra, A., and Jain, S. M. (2006). Tissue culture of ornamental pot plant: A critical review on present scenario and future prospects. Biotechnology Advances, 24(6), 531–560, https://doi.org/10.1016/J.BIOTECHADV.2006.05.001.
- Sarathum, S., Hegele, M., Tantiviwat, S., and Nanakorn, M. (2010). Effect of concentration and duration of colchicine treatment on polyploidy induction in Dendrobium scabrilingue L. European Journal of Horticultural Science, 75(3), 123–127, https://doi.org/10.1079/ejhs.2010/1591099.
- Sonsud, T., Boonkorkaew, P., Kasemsap, P., and Wanichananan, P. (2014). Effect of water salinity on growth and photosynthetic rate of Dendrobium Sonia 'Earsakul'. Agricultural sciences: leading Thailand to world class standards. Paper presented at the 52nd Kasetsart University Annual Conference, 4–7 February 2014, Kasetsart University, Thailand. Vol. 1: Plants, (121–128).
- Teixeira da silva, J. A., cardoso, J. C., dobránszki, J., and Zeng, S. (2015). Dendrobium micropropagation: A review. Plant Cell Reports, 34, 671–704, https://doi.org/10.1007/S00299-015-1754-4.
- Takayanagi, N., Mukai, M., Sugiyama, M., and Ohtani, M. (2022). Transcriptional regulation of cell proliferation competence-associated Arabidopsis genes, CDKA; 1, RID1 and SRD2, by phytohormones in tissue culture. Plant Biotechnology, 39(3), 329–333, https://doi.org/10.5511/plantbiotechnology.22.0513a.
- Teixeira da silva, J. A., dobránszki, J., cardoso, J. C., Chandler, S. F., and Zeng, S. (2016). Methods for genetic transformation in Dendrobium. Plant Cell Reports, 35, 483–504, https://doi.org/10.1007/s00299-015-1917-3.
- Teixeira Da Silva, J. A., and Ng, T. B. (2017). The medicinal and pharmaceutical importance of Dendrobium species. Applied Microbiology and Biotechnology, 101, 2227–2239, https://doi.org/10.1007/S00253-017-8169-9.
- Teixeira Da Silva, J. A. (2015). Sensitivity of hybrid Cymbidium (Orchidaceae) to salt stress (MgSO4, CaCl2 and KNO3). Biotecnología Vegetal,15(3), 131–135, https://biblat.unam.mx/hevila/Biotecnologiavegetal/2015/vol15/no3/1.pdf.
- Thairath Online. (2021). Farmers in Sam Phran cry out: Severe year, COVID not easing, heavy saltwater intrusion. Retrieved from https://www.thairath.co.th/news/local/central/2033860, date 2025-03-13.
- Vacin, E. F., and Went, F. W. (1949). Some pH changes in nutrient solutions. Botanical Gazette,, 110(4), 605–613, https://doi.org/10.1086/335561.
- Wang, Y. T. (1998). Impact of salinity and media on growth and flowering of a hybrid Phalaenopsis orchid. Hortscience: A Publication of the American Society for Horticultural Science, 33(2), 247–250, https://doi.org/10.21273/HORTSCI.33.2.0247.
- Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144(3), 307–313, https://doi.org/10.1016/S0176-1617(11)81192-2.
- Winicov, I., and Seemann, J. R. (1990). Expression of genes for photosynthesis and the relationship to salt tolerance of alfalfa (Medicago sativa) cells. Plant and Cell Physiology, 31(8), 1155–1161, https://doi.org/10.1093/OXFORDJOURNALS.PCP.A078029.
- Yang, S. H., Yu, H., and Goh, C. J. (2003). Functional characterisation of a cytokinin oxidase gene DSCKX1 in Dendrobium orchid. Plant Molecular Biology, 51, 237–248, https://doi.org/10.1023/A:1021115816540.
- Yao, X. C., Meng, L. F., Zhao, W. L., and Mao, G. L. (2023). Changes in the morphology traits, anatomical structure of the leaves and transcriptome in Lycium barbarum L. under salt stress. Frontiers in Plant Science, 14, 1090366, https://doi.org/10.3389/FPLS.2023.1090366.
- Yildirim, E., Turan, M., and Guvenc, I. (2008). Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. Journal of Plant Nutrition, 31(3), 593– 612, https://doi.org/10.1080/01904160801895118.
- Yuan, S. C., Lekawatana, S., Amore, T. D., Chen, F. C., Chin, S. W., Vega, D. M., and Wang, Y. T. (2021). The global orchid market. In F. C. Chen and S. W. Chin (Eds.), The orchid genome. Compendium of plant genomes (pp. 1–28). Cham, Switzerland: Springer, https://doi.org/10.1007/978-3-030-66826-6_1.
- Zhang, G., Song, C., Zhao, M. M., Li, B., and Guo, S. X. (2012). Characterization of an A-type cyclin-dependent kinase gene from Dendrobium candidum. Biologia, 67, 360–368, https://doi.org/10.2478/s11756-012-0016-y.
- Zhang, L., Zhang, L., Sun, J., Zhang, Z., Ren, H., and Sui, X. (2013). Rubisco gene expression and photosynthetic characteristics of cucumber seedlings in response to water deficit. Scientia Horticulturae, 161, 81–87, https://doi.org/10.1016/J.SCIENTA.2013.06.029.