Have a personal or library account? Click to login

Mitigation of salt stress in Phaseolus vulgaris L. by dopamine: Effects on growth, physiological parameters and antioxidant activity

Open Access
|Aug 2025

References

  1. Abdulmajeed, A. M., Alharbi, B. M., Alharby, H. F., Abualresh, A. M., Badawy, G. A., Semida, W. M., and Rady, M. M. (2022). Simultaneous action of silymarin and dopamine enhances defense mechanisms related to antioxidants, polyamine metabolic enzymes, and tolerance to cadmium stress in Phaseolus vulgaris. Plants, 11(22), 3069, https://doi.org/10.3390/plants11223069.
  2. Abedi, T., and Pakniyat, H. (2010). Antioxidant enzymes changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech Journal of Genetic and Plant Breeding, 46, 27–34, https://doi.org/10.17221/67/2009-CJGPB.
  3. Ahammed, G. J., and Li, X. (2023). Dopamine-induced abiotic stress tolerance in horticultural plants. Scientia Horticulturae, 307, 111506, https://doi.org/10.1016/j.scienta.2022.111506.
  4. Ahmad, P., Hashem, A., Abdallah, E. F., Alqarawi, A. A., John, R., Egamberdieva, D., and Gucel, S. (2015). Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Frontiers in Plant Science, 6, 868, https://doi.org/10.3389/fpls.2015.00868.
  5. Ait-El-Mokhtar, M., Laouane, R. B., Anli, M., Boutasknit, A., Wahbi, S., and Meddich, A. (2019). Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Scientia Horticulturae, 253, 429–438, https://doi.org/10.1016/j.scienta.2019.04.066.
  6. Akcay, U. C., Gencay, R., and Koc, F. Z. (2024). Effect of dopamine and progesterone on the physiological and molecular responses of tomato seedlings to drought and salt stress. Cogent Food & Agriculture, 10(1), 2321308, https://doi.org/10.1080/23311932.2024.2321308.
  7. Angelini, R., Manes, F., and Federico, R. (1990). Spatial and functional correlation between diamine-oxidase and peroxidase activities and their dependence upon de-etiolation and wounding in chickpea stems. Planta, 182, 89–96, https://doi.org/10.1007/BF00239989.
  8. Assouguem, A., Lahlali, R., Joutei, A. B., Kara, M., Bari, A., Aberkani, K., Kaur, S., Mokrini, F., and Lazraq, A. (2024). Assessing Panonychus ulmi (Acari: Tetranychidae) infestations and their key predators on Malus domestica Borkh in varied ecological settings. Agronomy, 14(3), 457, https://doi.org/10.3390/agronomy14030457.
  9. Bates, L. S., Waldren, R. A., and Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205–207, https://doi.org/10.1007/BF00018060.
  10. Battal, P., and Tileklioğlu, B. (2001). The effects of different mineral nutrients on the levels of cytokinins in maize (Zea mays L.). Turkish Journal of Botany, 25, 123–130.
  11. Berber, i., and Yaşar, F. (2011). Characterization of bean (Phaseolus vulgaris L.) cultivars grown in Turkey by SDS-PAGE of seed proteins. Pakistan Journal of Botany, 43(2), 1085–1090.
  12. Carillo, P., Annunziata, M. G., Pontecorvo, G., Fuggi, A., and Woodrow, P. (2011). Salinity stress and salt tolerance. In A. Shanker and B. Venkateswarlu (Eds), Abiotic Stress in Plants - Mechanisms and Adaptations (pp. 21–38). InTech, https://doi.org/10.5772/22331.
  13. Chen, L., Liu, L., Lu, B., Ma, T., Jiang, D., Li, J., Zhang, K., Sun, H., Zhang, Y., Bai, Z., and Li, C. (2020). Exogenous melatonin promotes seed germination and osmotic regulation under salt stress in cotton (Gossypium hirsutum L.). PloS ONE, 15, 0228241, https://doi.org/10.1371/journal.pone.
  14. Cocozza, C., Pulvento, C., Lavini, A., Riccardi, M., D’andria, R., and Tognetti, R. (2013). Effects of increasing salinity stress and decreasing water availability on ecophysiological traits of quinoa (Chenopodium quinoa Wild.) grown in a Mediterranean-type agroecosystem. Journal of Agronomy and Crop Science, 199, 229–240, https://doi.org/10.1111/jac.12012.
  15. Cramer, G. R., Urano, K., Delrot, S., Pezzotti, M., and Shinozaki, K. (2011). Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biology, 11, 163, https://doi.org/10.1186/1471-2229-11-163.
  16. Dadasoglu, E., Ekinci, M., Kul, R., Shams, M., Turan, M., and Yildirim, E. (2021). Nitric oxide enhances salt tolerance through regulating antioxidant enzyme activity and nutrient uptake in pea. Legume Research, 44, 41–45, https://doi.org/10.18805/LR-540.
  17. Dadasoglu, E., Turan, M., Ekinci, M., Argin, S., and Yildirim, E. (2022). Alleviation mechanism of melatonin in chickpea (Cicer arietinum L.) under the salt stress conditions. Horticulturae, 8, 1066, https://doi.org/10.3390/horticulturae8111066.
  18. Dos Santos, T. B., Ribas, A. F., De Souza, S. G. H., Budzinski, I. G. F., and Domingues, D. S. (2022). Physiological responses to drought, salinity, and heat stress in plants: A review. Stresses, 2(1), 113–135, https://doi.org/10.3390/stresses2010009.
  19. Ekinci, M., Kocaman, A., Argin, S., Turan, M., and Dadasoglu, F. (2021). Rhizobacteria alleviate the adverse effects of salt stress on seedling growth of Capsicum annuum L. by modulating the antioxidant enzyme activity and mineral uptake. Taiwania, 66, 287–297, https://doi.org/10.6165/tai.2021.66.287.
  20. Elrys, A. S., Abdo, A. I., Abdel-Hamed, E. M., and Desoky, E. S. M. (2020). Integrative application of licorice root extract or lipoic acid with fulvic acid improves wheat production and defenses under salt stress conditions. Ecotoxicology and Environmental Safety, 190, 110–144, https://doi.org/10.1016/j.ecoenv.2019.110144.
  21. Farouk, S., El-Hady, M. A. A., El-Sherpiny, M. A., Hassan, M. M., Alamer, K. H., Al-Robai, S. A., and El-Bauome, H. A. (2023). Effect of dopamine on growth, some biochemical attributes, and the yield of crisp head lettuce under nitrogen deficiency. Horticulturae, 9(8), 945, https://doi.org/10.3390/horticulturae9080945.
  22. Gao, T., Liu, X., Shan, L., Wu, Q., Liu, Y., Zhang, Z., Ma, F., and Li, C. (2020). Dopamine and arbuscular mycorrhizal fungi act synergistically to promote apple growth under salt stress. Environmental and Experimental Botany, 178, 104–159, https://doi.org/10.1016/j.envexpbot.2020.104159.
  23. Garcia, C. L., Dattamudi, S., Chanda, S., and Jayachandran, K. (2019). Effect of salinity stress and microbial inoculations on glomalin production and plant growth parameters of snap bean (Phaseolus vulgaris). Agronomy, 9, 545, https://doi.org/10.3390/agronomy9090545.
  24. Haghshenas, M., Van Delden, S. H., and Nazarideljou, M. J. (2024). Effects of nutrient solution strength, PGPB, and mycorrhizal inoculation on growth, yield, and quality of strawberry. Turkish Journal of Agriculture and Forestry, 48(3), 390–401, https://doi.org/10.55730/1300-011X.3189.
  25. Hao, S., Wang, Y., Yan, Y., Liu, Y., Wang, J., and Chen, S. (2021). A review on plant responses to salt stress and their mechanisms of salt resistance. Horticulturae, 7, 132, https://doi.org/10.3390/horticulturae7060132.
  26. Hayat, F., Khan, U., Zeeshan, M., Ali, Q., Nawaz, M. A., Ahmed, N., Ercisli, S., Kandhan, K., Al-Zayadneh, W., Sulieman, S., Sheteiwy, M., and Alyafei, M. (2024). Mechanistic understanding of hormone regulation of abiotic stresses in horticultural plants: A review. Turkish Journal of Agriculture and Forestry, 48(6), 825–840, https://doi.org/10.55730/1300-011X.3224.
  27. Hull, H. M., Morton, H. L., and Wharrie, J. R. (1975). Environmental influence on cuticle development and resultant foliar penetration. The Botanical Reviews, 41, 421–451, https://doi.org/10.1007/BF02860832.
  28. Iftikhar, N., Perveen, S., Ali, B., Saleem, M. H., and Al-Sadoon, M. (2024). Physiological and biochemical responses of maize (Zea mays L.) cultivars under salinity stress. Turkish Journal of Agricultural and Forestry, 48(3), 332–343, https://doi.org/10.55730/1300-011X.3185.
  29. Jiao, C., Lan, G., Sun, Y., Wang, G., and Sun, Y. (2021). Dopamine alleviates chilling stress in watermelon seedlings via modulation of proline content, antioxidant enzyme activity, and polyamine metabolism. Journal of Plant Growth Regulation, 40, 277–292, https://doi.org/10.1007/s00344-020-10096-2.
  30. Jukanti, A. K., Gaur, P. M., Gowda, C. L. L., and Chibbar, R. N. (2012). Nutritional quality and health benefits of chickpea (Cicer arietinum L.): A review. The British Journal of Nutrition, 108, 11–26, https://doi.org/10.1017/S0007114512000797.
  31. Kanazawa, K., and Sakakibara, H. (2000). High content of dopamine, a strong antioxidant, in cavendish banana. Journal of Agricultural and Food Chemistry, 48, 844–848, https://doi.org/10.1021/jf9909860.
  32. kaya, C., Luna, A. L., and Yokaş, I. (2009). The role of plant hormones in plants under salinity stress. In M. Ashraf, M. Ozturk and H. Athar (Eds), Salinity and Water Stress. Tasks for Vegetation Sciences, vol. 44. (pp. 45–50). Dordrecht: Springer, https://doi.org/10.1007/978-1-4020-9065-3_5.
  33. Kazan, K. (2013). Auxin and the integration of environmental signals into plant root development. Annals of Botany, 112(9), 1655–1665, https://doi.org/10.1093/aob/mct229.
  34. Kulma, A., and Szopa, J. (2007). Catecholamines are active compounds in plants. Plant Science, 172, 433–440, https://doi.org/10.1016/j.plantsci.2006.10.013.
  35. Kuraishi, S., Tasaki, K., Sakura, N., and Sadatoku, K. (1991). Changes in levels of cytokinins in etiolated squash seedlings after illumination. Plant and Cell Physiology, 32, 585–591, https://doi.org/10.1093/oxfordjournals.pcp.a078120.
  36. Liang, B., Gao, T., Zhao, Q., Ma, C., Chen, Q., Wei, Z., Li, C., and Ma, F. (2018). Effects of exogenous dopamine on the uptake, transport, and resorption of apple ionome under moderate drought. Frontiers in Plant Science, 9, 755, https://doi.org/10.3389/fpls.2018.00755.
  37. Li, C., Sun, X., Chang, C., Jia, D., Wei, Z., Li, C., and Ma, F. (2015). Dopamine alleviates salt-induced stress in Malus hupehensis. Physiologia Plantarum, 153, 584–602, https://doi.org/10.1111/ppl.12264.
  38. Li, J., Liu, J., Zhu, T., Zhao, C., Li, L., and Chen, M. (2019). The role of melatonin in salt stress responses. International Journal of Molecular Sciences, 20, 1735, https://doi.org/10.3390/ijms20071735.
  39. Liu, Q., Gao, T., Liu, W., Liu, Y., Zhao, Y., Liu, Y., Li, W., Ding, K., Ma, F., and Li, C. (2020). Functions of dopamine in plants: A review. Plant Signaling and Behavior, 15, 1827782, https://doi.org/10.1080/15592324.2020.1827782.
  40. Martinez, V., Mestre, T. C., Rubio, F., Girones-Vilaplana, A., Moreno, D. A., Mittler, R., and Rivero, R. M. (2016). Accumulation of flavonols over hydroxycinnamic acids favors oxidative damage protection under abiotic stress. Frontiers in Plant Science, 7, 838, https://doi.org/10.3389/fpls.2016.00838.
  41. Mertens, D. (2005a). “AOAC Official Method” 922.02. Plants preparation of laboratuary sample. In W. Horwitz and G. W. Latimer (Eds), Official Methods of Analysis (18th ed., Chap. 3, pp. 1–2). Gaitherburg, MD, USA: AOAC-International.
  42. Mertens, D. (2005b). “AOAC Official Method” 975.03. Metal in plants and pet foods. In W. Horwitz and G. W. Latimer (Eds), Official methods of analysis (Chap. 3, pp. 3–4). Gaitherburg, MD, USA: AOAC-International.
  43. Oral, E., Tunçtürk, R., Tunçtürk, M., and Kulaz, H. (2020). Effect of silicium on reducing salt (NaCl) stress in beans (Phaseolus vulgaris L.). Kahramanmaras Sutcu Imam University Journal of Agriculture and Nature, 23, 1616–1625, https://doi.org/10.18016/ksutarimdoga.vi.702302.
  44. Ran, X., Wang, X., Gao, X., Liang, H., Liu, B., and Huang, X. (2021). Effects of salt stress on the photosynthetic physiology and mineral ion absorption and distribution in white willow (Salix alba L.). PloS ONE, 16, 0260086, https://doi.org/10.1371/journal.pone.0260086.
  45. Rasool, S., Ahmad, A., Siddiqi, T. O., and Ahmad, P. (2013). Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiologia Plantarum, 35, 1039–1050, https://doi.org/10.1007/s11738-012-1142-4.
  46. Roshchina, V. V. (2022). Biogenic amines in plant cell at normal and stress: probes for dopamine and histamine. In T. Aftab and M. Naeem (Eds), Emerging Plant Growth Regulators in Agriculture (pp. 357–376). Academic Press.
  47. Roy, S. J., Negrão, S., and Tester, M. (2014). Salt resistant crop plants. Current Opinion in Biotechnology, 26, 115–124, https://doi.org/10.1016/j.copbio.2013.12.004.
  48. Samancioglu, A., Yildirim, E., Turan, M., Kotan, R., Sahin, U., and Kul, R. (2016). Amelioration of drought stress adverse effect and mediating biochemical content of cabbage seedlings by plant growth promoting rhizobacteria. International Journal of Agriculture and Biology, 18, 5, https://doi.org/10.17957/IJAB/15.0195.
  49. Shams, M., and Yildirim, E. (2021). Variations in response of CaPAO and CaATG8c genes, hormone, photosynthesis and antioxidative system in pepper genotypes under salinity stress. Scientia Horticulturae, 282, 110041, https://doi.org/10.1016/j.scienta.2021.110041.
  50. Shi, Q., Bao, Z., Zhu, Z., Ying, Q., and Qian, Q. (2006). Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regulation, 48, 127–135, https://doi.org/10.1007/s10725-005-5482-6.
  51. Singh, M., Nara, U., Kumar, A., Choudhary, A., Singh, H., and Thapa, S. (2021). Salinity tolerance mechanisms and their breeding implications. Journal of Genetic Engineering and Biotechnology, 19(1), 173, https://doi.org/10.1186/s43141-021-00274-4.
  52. Taibi, K., Taibi, F., Abderrahim, L. A., Ennajah, A., Belkhodja, M., and Mulet, J. M. (2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defense systems in Phaseolus vulgaris L. South African Journal of Botany, 105, 306–312, https://doi.org/10.1016/j.sajb.2016.03.011.
  53. Turan, M., Ekinci, M., Yildirim, E., Güneş, A., Karagöz, K., Kotan, R., and Dursun, A. (2014). Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turkish Journal of Agriculture and Forestry, 38, 327–333, https://doi.org/10.3906/tar-1308-62.
  54. Velikova, V., Yordanov, I., and Edreva, A. J. P. S. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science, 151, 59–66, https://doi.org/10.1016/S0168-9452(99)00197-1.
  55. Verma, T., Bhardwaj, S., Singh, J., Kapoor, D., and Prasad, R. (2022). Triacontanol as a versatile plant growth regulator in overcoming negative effects of salt stress. Journal of Agriculture and Food Research, 10, 100351, https://doi.org/10.1016/j.jafr.2022.100351.
  56. Vijayan, K., Chakraborti, S. P., Shyama, P., Ercisli, S., and Ghosh, P. D. (2008). NaCl induced morpho-biochemical and anatomical changes in mulberry (Morus spp.). Plant Growth Regulation, 56(1), 61–69, https://doi.org/10.1007/s10725-008-9284-5.
  57. Wang, C., Wei, L., Zhang, J., Hu, D., Gao, R., Liu, Y., Feng, L., Gong, W., and Liao, W. (2023). Nitric oxide enhances salt tolerance in tomato seedlings by regulating endogenous S-nitrosylation levels. Journal of Plant Growth Regulation, 42, 275–293, https://doi.org/10.1007/s00344-021-10546-5.
  58. Wang, S., Che, T., Levit, A., Shoichet, B. K., and Wacker, D. (2018). Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature, 555, 269–273, https://doi.org/10.1038/nature25758.
  59. Waśkiewicz, A., Beszterda, M., and Goliński, P. (2013). ABA: Role in plant signaling under salt stress. In P. Ahmad, M. M. Azooz and M. N. V. Prasad (Eds), Salt Stress in Plants: Signaling, Omics and Adaptations (pp. 175–196). New York, NY, USA: Springer.
  60. Yadav, S., Modi, P., Dave, A., Vijapura, A., Patel, D., and Patel, M. (2020). Effect of abiotic stress on crops. In M. Hasanuzzaman, M. C. M. T. Filho, M. Fujita and T. A. R. Nogueira (Eds), Sustainable Crop Production. IntechOpen, https://doi.org/10.5772/intechopen.88434.
  61. Yildirim, E., Ekinci, M., and Turan, M. (2022). Biochar mitigates salt stress by regulating nutrient uptake and antioxidant activity, alleviating the oxidative stress and abscisic acid content in cabbage seedlings. Turkish Journal of Agriculture and Forestry, 46, 28–37, https://doi.org/10.3906/tar-2104-81.
  62. Yildirim, E., Ekinci, M., Turan, M., Dursun, A., Kul, R., and Parlakova, F. (2015). Roles of glycine betaine in mitigating deleterious effect of salt stress on lettuce (Lactuca sativa L.). Archives of Agronomy and Soil Science, 61, 1673–1689, https://doi.org/10.1080/03650340.2015.1030611.
  63. Yildirim, E., Ekinci, M., Turan, M., Yuce, M., Ors, S., Araz, O., Torun, U., and Argin, S. (2024). Exogenous dopamine mitigates the effects of salinity stress in tomato seedlings by alleviating the oxidative stress and regulating phytohormones. Acta Physiologiae Plantarum, 46(5), 59, https://doi.org/10.1007/s11738-024-03656-6.
  64. Yu, Z., Duan, X., Luo, L., Dai, S., Ding, Z., and Xia, G. (2020). How plant hormones mediate salt stress responses. Trends in Plant Science, 25, 1117–1130, https://doi.org/10.1016/j.tplants.2020.06.008.
  65. Zahedi, S. M., Hosseini, M. S., Fahadi Hoveizeh, N., Gholami, R., Abdelrahman, M., and Tran, L. S. P. (2021). Exogenous melatonin mitigates salinity-induced damage in olive seedlings by modulating ion homeostasis, antioxidant defense, and phytohormone balance. Physiologia Plantarum, 173, 1682–1694, https://doi.org/10.1111/ppl.13589.
DOI: https://doi.org/10.2478/fhort-2025-0010 | Journal eISSN: 2083-5965 | Journal ISSN: 0867-1761
Language: English
Page range: 113 - 126
Submitted on: Jan 18, 2025
Accepted on: Jun 9, 2025
Published on: Aug 6, 2025
Published by: Polish Society for Horticultural Sciences (PSHS)
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Esin Dadasoglu, Metin Turan, Ertan Yildirim, Sezai Ercisli, Amine Assouguem, Ahmed El-Haidani, Ghadeer M. Albadrani, Muath Q. Al-Ghadi, Amany A. Sayed, Mohamed M. Abdel-Daim, Sadiye Peral Eyduran, published by Polish Society for Horticultural Sciences (PSHS)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.