Have a personal or library account? Click to login

The effect of different mulch materials with varying thicknesses on weed control and yield in eggplant cultivation

Open Access
|Jul 2025

References

  1. Abdrabbo, M. A. A., Saleh, S. M., and Hashem, F. A. (2017). Eggplant production under deficit irrigation and polyethylene mulch. Egyptian Journal of Applied Sciences, 32(7), 148–161, https://doi.org/10.13140/RG.2.2.21904.40961.
  2. Adamczewska-Sowińska, K., Krygier, M., and Turczuk, J. (2016). The yield of eggplant depending on climate conditions and mulching. Folia Horticulturae, 28(1), 19–24, https://doi.org/10.1515/fhort-2016-0003
  3. Ahmad, S., Raza, M. A. S., Saleem, M. F., Zaheer, M. S., Iqbal, R., Haider, I., Aslam, M. U., Ali, M., and Khan, I. H. (2020). Significance of partial root zone drying and mulches for water saving and weed suppression in wheat. The Journal of Animal and Plant Sciences, 30(1), 154–162, https://doi.org/10.36899/japs.2020.1.0018
  4. Ahmed, M. S. M., Manal, M. H., Moula, G. E., Farag, A. A., and Aly, A. M. M. (2016). Response of eggplant (Solanum melongena L.) to application of some organic fertilizers under different colors of plastic mulch. Middle East Journal of Scientific Research, 5(4), 636–646.
  5. Akkuş, M. (2015). The determination of irrigation programs of eggplant (Solanum melongena L.) at the different water levels and its effects on the yield components under semi-arid climate conditions (p. 87). MSc thesis. Turkey: Harran University.
  6. Al-Bayati, H. M., and Hamdoon, D. N. (2019). Response of eggplant Solanum melongena L. to soil mulching, organic and inorganic fertilizers on vegetative growth traits and yield grown under unheated plastic house. IOP Conference Series: Earth and Environmental Science, 388(1), 012075, https://doi.org/10.1088/1755-1315/388/1/012075
  7. Aliyu, L., and Lagoke, S. T. O. (1995). Evaluation of herbicides for weed control in Solanum aethiopicum L. (scarlet eggplant) at Samaru, Nigeria. Crop Protection, 14(6), 479–481, https://doi.org/10.1016/0261-2194(95)00020-m
  8. Almhemed, K., and Ustuner, T. (2022). Assessment of some weed control methods efficacy and yield losses caused by weed in eggplant. Fresenius Environmental Bulletin, 31(8), 7514-7520.
  9. Alptekin, H., and Gürbüz, R. (2022). The effect of organic mulch materials on weed control in cucumber (Cucumis sativus L.) cultivation. Journal of Agriculture, 5(1), 68–79, https://doi.org/10.46876/ja.1126331
  10. Altinok, H. H. (2013). Fusarium species isolated from common weeds in eggplant fields and symptomless hosts of Fusarium oxysporum f. sp. melongenae in Turkey. Journal of Phytopathology, 161(5), 335–340, https://doi.org/10.1111/jph.12074
  11. Aramendiz-Tatis, H., Cardona-Ayala, C., and De Oro, R. (2010). Periodo de interferencia de arvenses en el cultivo de berenjena (Solanum melongena L.). Agronomía Colombiana, 28(1), 81–88.
  12. Ateş, S. (2007). Determination of the effects of weed control methods and agroecological criters in organically grown eggplant and pepper (p. 115). MSc thesis. Adana, Turkey: Çukurova University, Graduate School of Natural and Applied Sciences.
  13. Ateş, S., and Uygur, F. N. (2013). Ekolojik yöntemlerle yetiştirilen patlıcan ve biberde yabancı ot mücadele yöntemlerinin ve etkinliklerinin araştırılması. Nevşehir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2(1), 69-77.
  14. Braga, P. C., Scalzo, R. L., Dal Sasso, M., Lattuada, N., Greco, V., and Fibiani, M. (2016). Characterization and antioxidant activity of semipurified extracts and pure delphinidin-glycosides from eggplant peel (Solanum melongena L.). Journal of Functional Foods, 20, 411–421, https://doi.org/10.1016/j.jff.2015.10.032
  15. Carter, J. R., and Johnson, C. D. (1988). Influence of different types of mulches on eggplant production. HortScience, 23(1), 143–145, https://doi.org/10.21273/HORTSCI.23.1.143
  16. Di Miceli, G., Iacuzzi, N., Leto, C., Cozzolino, E., Di Mola, I., Ottaiano, L., Mori, M., and Bella, S. L. (2024). Assessment of yield and quality of eggplant (Solanum melongena L.) fruits improved by biodegradable mulching film in two different regions of southern Italy. Agronomy, 14(4), 867, https://doi.org/10.3390/agronomy14040867
  17. Díaz-Pérez, J. C. (2023). Degradation of plastic film mulch affects root zone temperature and fruit yield of eggplant (Solanum melongena L.). Technology in Horticulture, 3, 6, https://doi.org/10.48130/tih-2023-0006
  18. Döring, T. F., Brandt, M., Jürgen Heß, J., Finckh, M. R., and Saucke, H. (2005). Effects of straw mulch on soil nitrate dynamics, weeds, yield and soil erosion in organically grown potatoes. Field Crops Research, 94(2–3), 238–249, https://doi.org/10.1016/j.fcr.2005.01.006
  19. El-Semellawy, E. M. H., and El-Koumy, H. M. (2015). Response of growth and yield of eggplants (Solanum melongena L.) to organic mulches and nitrogen fertilization levels during late summer season. Egyptian Journal of Horticulture, 42(2), 853–864, https://doi.org/10.21608/ejoh.2015.1336
  20. Fao. (2024). Food and Agriculture Organization of the United Nations. Retrieved December 25, 2024, from http://www.fao.org/home/en/
  21. Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., and Zaks, D. P. (2011). Solutions for a cultivated planet. Nature, 478, 337–342, https://doi.org/10.1038/nature10452
  22. Forcella, F., Poppe, S. R., Hansen, N. C., Head, W. A., Hoover, E., Propsom, F., and Mckensie, J. (2003). Biological mulches for managing weeds in transplanted strawberry (Fragaria × ananassa). Weed Technology, 17(4), 782–787, https://doi.org/10.1614/wt02-167
  23. Genger, R. K., Rouse, D. I., and Charkowski, A. O. (2018). Straw mulch increases potato yield and suppresses weeds in an organic production system. Biological Agriculture and Horticulture, 34(1), 53–69, https://doi.org/10.1080/01448765.2017.1371077
  24. Gerten, D., Heck, V., Jägermeyr, J., Bodirsky, B. L., Fetzer, I., Jalava, M., Kummu, M., Lucht, W., Rockström, J., Schaphoff, S., and Schellnhuber, H. J. (2020). Feeding ten billion people is possible within four terrestrial planetary boundaries. Nature Sustainability, 3(3), 200–208, https://doi.org/10.1038/s41893-019-0465-1
  25. Gilreath, J. P., and Santos, B. M. (2005). Weed management with oxyfluorfen and napropamide in mulched strawberry. Weed Technology, 19(2), 325–328, https://doi.org/10.1614/wt-04-114r
  26. Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., and Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. Science, 327(5967), 812–818, https://doi.org/10.1126/science.1185383
  27. Gómez De Barreda, D., Bautista, I., Castell, V., and Lidón, A. (2023). Rice straw mulch installation in a vineyard improves weed control and modifies soil characteristics. Agronomy, 13(12), 3068, https://doi.org/10.3390/agronomy13123068
  28. Gradila, M., Jaloba, D., Ciontu, V. M., and Cristea, R. M. (2023). Problem weeds control in strawberry crops ın different growıng systems in Romania. Agriculture and Food, 11, 296–303, https://doi.org/10.62991/AF1996321943
  29. Grassbaugh, E. M., Regnier, E. E. and Bennett, M. A., (2004). Comparison of organic and inorganic mulches for Heirloom tomato production. Acta Horticulturae 638, 171–176, https://doi.org/10.17660/ActaHortic.2004.638.22
  30. Greenly, K. M., and Rakow, D. A. (1995). The effect of wood mulch type and depth on weed and tree growth and certain soil parameters. Arboriculture and Urban Forestry, 21(5), 225–232, https://doi.org/10.48044/jauf.1995.036
  31. Gürbüz, R., Alptekin, H., and Kayci, H. (2021). Biçilmiş yabancı ot atıklarının patlıcan üretiminde malç materyali olarak kullanım olanağı. International Applied Sciences Congress, 14–15 April, Iğdır, Turkey, 40-48.
  32. Gürbüz, R., Alma, M. H., Alptekin, H., and Tülek, C. (2024). Performance of some organic mulch materials for weed suppression, soil conditions and yield in Capsicum annuum L. cultivation. Journal of the Institute of Science and Technology, 14(1), 18–38, https://doi.org/10.21597/jist.1326729
  33. Hammermeister, A. M. (2016). Organic weed management in perennial fruits. Scientia Horticulturae, 208, 28–42, https://doi.org/10.1016/j.scienta.2016.02.004.
  34. Haapala, T., Palonen, P., Korpela, A., and Ahokas, J. (2014). Feasibility of paper mulches in crop production – a review. Agricultural and Food Science, 23(1), 60–79, https://doi.org/10.23986/afsci.8542
  35. Hashimi, R., Komatsuzaki, M., Mineta, T., Kaneda, S., and Kaneko, N. (2019). Potential for no-tillage and clipped-weed mulching to improve soil quality and yield in organic eggplant production. Biological Agriculture and Horticulture, 35(3), 158–171, https://doi.org/10.1080/01448765.2019.1577757
  36. Hulme, M. F., Vickery, J. A., Green, R. E., Phalan, B., Chamberlain, D. E., Pomeroy, D. E., Nalwanga, D., Mushabe, D., Katebaka, R., Bolwig, S., and Atkinson, P. W. (2013). Conserving the birds of Uganda’s banana-coffee arc: land sparing and land sharing compared. PloS One, 8(2), e54597, https://doi.org/10.1371/journal.pone.0054597
  37. Hussain, M., Abbas Shah, S. N., Naeem, M., Farooq, S., Jabran, K., and Alfarraj, S. (2022). Impact of different mulching treatments on weed flora and productivity of maize (Zea mays L.) and sunflower (Helianthus annuus L.). PloS One, 17(4), e0266756, https://doi.org/10.1371/journal.pone.0266756
  38. IBM. (2011). IBM SPSS software. Retrieved from https://www.ibm.com/products/spss.
  39. Ihtisham, M., Hasanuzzaman, M., El-Sappah, A. H., Zaman, F., Khan, N., Raza, A., and Zhao, X. (2023). Primary plant nutrients modulate the reactive oxygen species metabolism and mitigate the impact of cold stress in overseeded perennial ryegrass. Frontiers in Plant Science, 14, 1149832, https://doi.org/10.3389/fpls.2023.1149832
  40. Iqbal, R., Raza, M. A. S., Valipour, M., Saleem, M. F., Zaheer, M. S., Ahmad, S., Toleikiene, M., Haider, I., Aslam, M. U., and Nazar, M. A. (2020). Potential agricultural and environmental benefits of mulches – a review. Bulletin of the National Research Centre, 44, 1–16, https://doi.org/10.1186/s42269-020-00290-3
  41. Jabłońska-Trypuć, A., Wydro, U., Wołejko, E., and Butarewicz, A. (2019). Toxicological effects of traumatic acid and selected herbicides on human breast cancer cells: in vitro cytotoxicity assessment of analysed compounds. Molecules, 24(9), 1710, https://doi.org/10.3390/molecules24091710
  42. Jabran, K. (2019). Role of mulching in pest management and agricultural sustainability. Cham, Switzerland: Springer Cham, https://doi.org/10.1007/978-3-030-22301-4
  43. Jodaugienė, D., Pupalienė, R., and Urbonienė, M. (2006). Effect of different organic mulches on annual and perennial weed emergence. Vagos 71, 27–32.
  44. Kasirajan, S., and Ngouajio, M. (2012). Polyethylene and biodegradable mulches for agricultural applications: a review. Agronomy for Sustainable Development, 32, 501–529, https://doi.org/10.1007/s13593-011-0068-3
  45. Kaya, Y. (2011). Effect of green fertilizing and mulching on plant weeds and tomato yield in tomato (p. 54). MSc thesis. Tokat, Turkey: Gaziosmanpasa University, Graduate School of Natural and Applied Science, Department of Plant Protection.
  46. Kitiş, Y. E. 2020. Buğday Tarımı-Yabancı Otlar ve Mücadelesi. Tarım Gündem Dergisi Özel Yayını. In T. Akar (Ed.), Buğday Tarımı (pp. 90–109). Izmir, Turkey: Nobel Akademik Yayıncılık, ISBN: 978-625-402-073-5.
  47. Kosterna, E. (2014). The effect of different types of straw mulches on weed-control in vegetables cultivation. Journal of Ecological Engineering, 15(4), 109–117, https://doi.org/10.12911/22998993.1125465
  48. Lopes, W. D. A., Negreiros, M. Z. D., Dombroski, J. L. D., Rodrigues, G. S. D. O., Soares, A. M., and Araújo, A. D. P. (2011). Análise do crescimento de tomate ‘SM-16’ cultivado sob diferentes coberturas de solo. Horticultura Brasileira, 29, 554–561, https://doi.org/10.1590/s0102-05362011000400019
  49. Marble, S. C., Steed, S. T., Saha, D., and Khamare, Y. (2019). On-farm evaluations of wood-derived, waste paper, and plastic mulch materials for weed control in Florida container nurseries. HortTechnology, 29(6), 866–873, https://doi.org/10.21273/horttech04437-19
  50. Marques, L. J. P., Bianco, M. S., Bianco, S., Cerveira, W. R. Jr., and Carvalho, L. B. (2019). Weed interference on the accumulation of dry mass and macronutrients of eggplant ‘Nápoli’. Planta Daninha, 37, e019191886, https://doi.org/10.1590/s0100-83582019370100101
  51. Marques, L. J. P., Bianco, S., Cecílio, A. B., Bianco, M. S., and Lopes, G. D. S. (2017). Weed interference in eggplant crops. Revista Caatinga, 30(4), 866–875, https://doi.org/10.1590/1983-21252017v30n406rc
  52. Memon, S. A., Hou, X., and Wang, L. (2017). Morphological and physiological response of eggplant (Solanum melongena L.) to polyethylene and biodegradable mulches. International Journal of Agriculture and Biology, 19(3), 521–528, https://doi.org/10.17957/IJAB/15.0316
  53. MS. (2024). Meteorological service. Retrieved April 04, 2024, from https://www.mgm.gov.tr/
  54. Neal, J. C., Wolfe, J. C., and Harlow, C. D. (2015). Auxinic herbicide phytotoxicity to container-grown Muhlenbergia capillaris and Miscanthus sinensis. Journal of Environmental Horticulture, 33(1), 1–6, https://doi.org/10.24266/0738-2898-33.1.1
  55. Nyasapoh, J. B. A., Danso, E. O., Kpodo, D. S., Amponsah, W., Arthur, E., Sabi, E. B., Obour, P. B., Akortey, W., Mensah, B. K. B., Ayayi, G. E., and Andersen, M. N. (2024). Irrigation and oil palm empty fruit bunch mulch enhance eggplant growth, radiation interception and dry matter yield. European Journal of Agronomy, 160, 127322, https://doi.org/10.1016/j.eja.2024.127322
  56. Odum, P. (Ed.). (1971). Fundamentals of ecology. Eastbourne, USA: WB Saunders Company.
  57. Omidvar, N., Ogbourne, S. M., Xu, Z., Burton, J., Ford, R., Salehin, B., and Bai, S. H. (2023). Effects of herbicides and mulch on the soil carbon, nitrogen, and microbial composition of two revegetated riparian zones over 3 years. Journal of Soils and Sediments, 23, 2766–2782, https://doi.org/10.1007/s11368-023-03530-x
  58. Pirboneh, H., Ghasemi, M., Abdzad Gohari, A., Bahari, B. and Babaei Bazkiyaei, Z., (2012). Effect of irrigation and straw mulch on yield and yield components of eggplant (Solanum melongena L.). International Journal of Basic and Applied Sciences, 3(1), 46–51.
  59. Ray, D. K., Mueller, N. D., West, P. C., and Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PloS One, 8(6), e66428, https://doi.org/10.1371/journal.pone.0066428
  60. Sabatino, L., Iapichino, G., Vetrano, F., Moncada, A., Miceli, A., De Pasquale, C., D’anna, F., and Giurgiulescu, L. (2018). Effects of polyethylene and biodegradable starch-based mulching fılms on eggplant production ın a Mediterranean area. Carpathian Journal of Food Science and Technology, 10(3), 81–89.
  61. Sardana, V., Mahajan, G., Jabran, K., and Chauhan, B. S. (2017). Role of competition in managing weeds: an introduction to the special issue. Crop Protection, 95, 1–7, https://doi.org/10.1016/j.cropro.2016.09.011
  62. Steinmetz, Z., Wollmann, C., Schaefer, M., Buchmann, C., David, J., Tröger, J., Muñoz, K., and Schaumann, G. E. (2016). Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Science of the Total Environment, 550, 690–705, https://doi.org/10.1016/j.scitotenv.2016.01.153
  63. Swanton, C. J., Nkoa, R., and Blackshaw, R. E. (2015). Experimental methods for crop-weed competition studies. Weed Science, 63(1), 2–11, https://doi.org/10.1614/ws-d-13-00062.1
  64. Syed Shahnaz, S. M. N. A. (2023). Determination of physicochemical properties of soil before and after agricultural mulching process at MMP Fresh Farm, Kedah (Eggplant Farm Area) (p. 20). Bachelor’s Degree in Chemical Engineering. Malaysia: Universiti Teknologi MARA.
  65. Taher, D., Solberg, S. Ø, Prohens, J., Chou, Y. Y., Rakha, M., and Wu, T. H. (2017). World vegetable center eggplant collection: origin, composition, seed dissemination and utilization in breeding. Frontiers in Plant Science, 8, 1484, https://doi.org/10.3389/fpls.2017.01484
  66. Tarara, J. M. (2000). Microclimate modification with plastic mulch. HortScience, 35(2), 169–180, https://doi.org/10.21273/hortsci.35.2.169
  67. Tarrant, A. R., Brainard, D. C., Tiemann, L. K., and Hayden, Z. D. (2024). Weed control, soil health, and yield tradeoffs of between-bed management strategies in organic plasticulture vegetable production. Frontiers in Sustainable Food Systems, 8, 1276415, https://doi.org/10.3389/fsufs.2024.1276415
  68. Tepe, I. (Ed.). (2022). Türkiye’de tarım ve tarım dışı alanlarda sorun olan yabancı otlar ve mücadeleleri. Van, Turkey: Yüzüncü Yıl University Press.
  69. Tuik. (2024). Turkish Statistical Institute. Retrieved December 12, 2025, from https://www.tuik.gov.tr/
  70. Tülek, C., Gürbüz, R., and Alptekin, H. (2022). Organik malç materyallerinin domates (Solanum lycopersicum L.)’te yabancı ot kontrolüne etkisi. Journal of Agriculture, 5(2), 86–101, https://doi.org/10.46876/ja.1208575
  71. Usanmaz Bozhüyük, A., Gürbüz, R., Alptekin, H., and Kayci, H. (2022). The use of different waste mulch materials against weeds which are problems in tomato (Solanum lycopersicum L.) cultivation. Selcuk Journal of Agriculture and Food Sciences, 36(2), 226–232, https://doi.org/10.15316/sjafs.2022.029
  72. Üstüner, T., and Güncan, A. (2002). Niğde ve yöresi patates tarlalarında sorun olan yabancı otların yoğunluğu ve önemi ile topluluk oluşturmaları üzerine araştırmalar. Türkiye Herboloji Dergisi, 5(2), 30–42.
  73. Van Donk, S. J., Lindgren, D. T., Schaaf, D. M., Petersen, J. L., and Tarkalson, D. D. (2012). Wood chip mulch thickness effects on soil water, soil temperature, weed growth and landscape plant growth. Journal of Applied Horticulture, 13(2), 91–95, https://doi.org/10.37855/jah.2011.v13i02.22
  74. Yu, J., Boyd, N. S., and Guan, Z. (2018). Relaycropping and fallow programs for strawberry-based production system: Effects on crop productivity and weed control. HortScience, 53(4), 445–450, https://doi.org/10.21273/hortsci12658-17
  75. Zargar, M., Magomedova, D., Kurbanov, S., Pleskachiov, Y., and Pakina, E. (2022). Macronutrient applications and irrigation regimes impact weed dynamics and weed seedbank augmentation in Solanum melongena L. fields. Agriculture, 13(1), 22, https://doi.org/10.3390/agriculture13010022
DOI: https://doi.org/10.2478/fhort-2025-0008 | Journal eISSN: 2083-5965 | Journal ISSN: 0867-1761
Language: English
Page range: 91 - 111
Submitted on: Jan 6, 2025
Accepted on: May 19, 2025
Published on: Jul 15, 2025
Published by: Polish Society for Horticultural Sciences (PSHS)
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Ramazan Gurbuz, Serkan Cağlar, Harun Alptekın, Volkan Okatan, İbrahim Kahramanoğlu, published by Polish Society for Horticultural Sciences (PSHS)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.