Have a personal or library account? Click to login

The impact of plasma activated water on spinach (Spinacia oleracea L.) growth, development and content of plant bioactive compounds

Open Access
|Aug 2025

References

  1. Abbaszadeh, R., Nia, P. K., Fattahi, M., and Marzdashti, H. G. (2021). The effects of three plasma-activated water generation systems on lettuce seed germination. Research in Agricultural Engineering, 67(3), 131–137, https://doi.org/10.17221/105/2020-RAE
  2. Antar, M., Lyu, D., Nazari, M., Shah, A., Zhou, X., and Smith, D. L. (2021). Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renewable and Sustainable Energy Reviews, 139, 110691, https://doi.org/10.1016/j.rser.2020.110691
  3. Aoac. (2023). Official methods of analysis of AOAC international. In G. W. Latimer Jr. (Ed.), (22nd ed., Vol. I). Oxford University Press, https://doi.org/10.1093/9780197610145.001.0001
  4. Attri, P., Ishikawa, K., Okumura, T., Koga, K., and Shiratani, M. (2020). Plasma agriculture from laboratory to farm: A review. Processes, 8, 1002, https://doi.org/10.3390/pr8081002
  5. Benković, R., Šumanovac, L., Jug, D., Jug, I., Japundžić-Palenkić, B., Mirosavljević, K., Popijač, M., and Benković-Lačić, T. (2021). Influence of aggregated tillage implements on fuel consumption and wheel slippage. Technical Gazette, 28(3), 956–962, https://doi.org/10.17559/TV-20201130162613
  6. Bergquist, S. (2006). Bioactive compounds in baby spinach (Spinacia oleracea L.). Effect of pre-and postharvest factors (p. 11). PhD dissertation, Swedish University of Agricultural Sciences, Alnarp.
  7. Brand-Williams, W., Cuvelier, M. E., and Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28, 25–30, https://doi.org/10.1016/S0023-6438(95)80008-5
  8. Brisset, J. L., and Pawlat, J. (2016). Chemical effects of air plasma species on aqueous solutes in direct and delayed exposure modes: Discharge, post-discharge and plasma activated water. Plasma Chemistry and Plant Processing, 36, 355–381, https://doi.org/10.1007/s11090-015-9653-6
  9. Carillo, P., and Gibon, Y. (2011). Protocol: Extraction and determination of proline. Prometheus Wiki, 1–5.
  10. EUROPEAN PHARMACOPOEIA. (2004). Council of Europe (4th ed., pp. 2377–2378). Strasbourg: European Pharmacopoeia.
  11. Gao, Y., Francis, K., and Zhang, X. (2022). Review on formation of cold plasma activated water (PAW) and the applications in food and agriculture. Food Research International (Ottawa, Ont.), 157, 111246, https://doi.org/10.1016/j.foodres.2022.111246
  12. Gierczik, K., Vukusic, T., Kovacs, L., Szekely, A., Szalai, G., Milosevic, S., Kocsy, G., Kutasi, K., and Galiba, G. (2020). Plasma-activated water to improve the stress tolerance of barley. Plasma Processes and Polymers, 17, 1900123, https://doi.org/10.1002/ppap.201900123
  13. Guo, Q., Wang, Y., Zhang, H., Qu, G., Wang, T., Sun, Q., and Liang, D. (2017). Alleviation of adverse effects of drought stress on wheat seed germination using atmospheric dielectric barrier discharge plasma treatment. Scientific Reports, 7, 1–14, https://doi.org/10.1038/s41598-017-16944-8
  14. Hamed, H. A., Mahmoud, G. A.-E., and Abeed, A. H. A. (2025). Unraveling growth and metabolic dynamics in drought-stressed spinach plants: Exploring the contribution of biological gibberellin. Scientia Horticulture, 34, 113924, https://doi.org/10.1016/j.scienta.2024.113924
  15. Holubova, L., Kyzek, S., Ďurovcová, I., Fabová, J., Horváthová, E., Ševčovičová, A., and Gálová, E. (2020). Non-thermal plasma—A new green priming agent for plants? International Journal of Molecular Sciences, 21(24), 9466, https://doi.org/10.3390/ijms21249466
  16. Huda-Faujan, N., Zubairi, S. I., and Aker, A. A. A. (2023). Natural and bioactive constituents of antioxidant and antimicrobial properties in Spinacia oleracea: A review. Sains Malaysiana, 52(9), 2571–2585, https://doi.org/10.17576/jsm-2023-5209-08
  17. ISO 11261:2004. (1995). Determination of total nitrogen, modified Kjeldahl method. Zagreb: ISO.
  18. Ito, M., Oh, J.-S., Ohta, T., Shiratani, M., and Hori, M. (2018). Current status and future prospects of agricultural applications using atmospheric-pressure plasma technologies. Plasma Processes and Polymers, 15, 1700073, https://doi.org/10.1002/ppap.201700073
  19. Japundžić-Palenkić, B., Benković, R., Benković-Lačić, T., Antunović, S., Japundžić, M., Romanjek Fajdetić, N., and Mirosavljević, K. (2022). Pepper growing modified by plasma activated water and growth conditions. Sustainability, 14, 15967, https://doi.org/10.3390/su142315967
  20. Ji, S. H., Choi, K. H., Pengkit, A., Im, J. S., Kim, J. S., Kim, Y. H., Park, Y., Hong, E. J., Jung, S. K., Choi, E. H., and Park, G. (2016). Effects of high voltage nanosecond pulsed plasma and micro DBD plasma on seed germination, growth development and physiological activities in spinach. Archives of Biochemistry and Biophysics, 605, 117–128, https://doi.org/10.1016/j.abb.2016.02.028
  21. Kang, M. H., Jeon, S. S., Shin, S. M., Veerana, M., Ji, S.-H., Uhm, H.-S., Choi, E.-H., Shin, J. H., and Park, G. (2019). Dynamics of nitric oxide level in liquids treated with microwave plasma-generated gas and their effects on spinach development. Scientific Reports, 9, 1011, https://doi.org/10.1038/s41598-018-37711-3
  22. Kučerová, K., Henselová, M., Slováková, L., Bačovčinová, M., and Hensel, K. (2021). Effect of plasma activated water, hydrogen peroxide, and nitrates on lettuce growth and its physiological parameters. Applied Sciences, 11, 1985, https://doi.org/10.3390/app11051985
  23. Kutasi, K., Krstulovic, N., Jurov, A., Salamon, K., Popovic, D., and Milosevic, S. (2021). Controlling: The composition of plasma-activated water by Cu ions. Plasma Sources Science and Technology, 30, 045015, https://doi.org/10.1088/1361-6595/abf078
  24. Kutasi, K., Popovic, D., Krstulovic, N., and Milosevic, S. (2019). Tuning the composition of plasma-activated water by a surface-wave microwave discharge and a KHz plasma jet. Plasma Sources Science and Technology, 28, 095010, https://doi.org/10.1088/1361-6595/ab3c2f
  25. Man, K.-Y., Chan, C.-O., Wan, S.-W., Kwok, K. W. H., Capozzi, F., Dong, N.-P., Wong, K.-H., and Mo, D. (2024). Untargeted foodomics for authenticating the organic farming of water spinach (Ipomoea aquatica). Food Chemistry, 453, 139545, https://doi.org/10.1016/j.foodchem.2024.139545
  26. Marinaccio, L., Zengin, G., Pieretti, S., Minosi, P., Szucs, E., Benyhe, S., Novellino, E., Masci, D., Stefanucci, A., and Mollica, A. (2023). Food-inspired peptides from spinach Rubisco endowed with antioxidant, antinociceptive and anti-inflammatory properties. Food Chemistry: X, 18, 1006–1040, https://doi.org/10.1016/j.fochx.2023.100640
  27. Meena, M., Divyanshu, K., Kumar, S., Swapnil, P., Zehra, A., Shukla, V., Yadal, M., and Upadhyay, R. S. (2019). Regulation of L-proline biosyntesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon, 5(12), e02952, 1–20, https://doi.org/10.1016/j.heliyon.2019.e02952
  28. Oliveira, M., Fernandez-Gomez, P., Alvarez-Ordonez, A., Prieto, M., and Lopez, M. (2022). Plasma-activated water: A cutting-edge technology driving innovation in the food industry. Food Research International (Ottawa, Ont.), 156, 111368, https://doi.org/10.1016/j.foodres.2022.111368
  29. Ozrekin, G. B., Uludag, T., and Tuzel, Y. (2018). Growing spinach (Spinacea oleracea L.) in a floating system with different concentration of nutrient solution. Applied Ecology and Environmental Research, 16, 3333–3350, https://doi.org/10.15666/aeer/1603_33333350
  30. Park, H., Lee, J. S., Lee, N., Know, K., Kim, J. B., Kim, S. B., Kim, H.-G., and Kim, D. W. (2023). Red stem of spinach promotes antioxidant and anti-inflammatory chondroprotection in a rat model of osteoarthritis. Journal of Functional Foods, 109, 105789, https://doi.org/10.1016/j.jff.2023.105789
  31. Patra, A., Venugopal, A. P., Pandiselvam, R., Sutar, P. P., and Ganesan, J. (2022). Effect of Plasma activated water (Paw) on physicochemical and functional properties of foods. Food Control, 142(6), 109268, https://doi.org/10.1016/j.foodcont.2022.109268
  32. Pipliya, S., Kumar, S., Babar, N., and Srivastav, P. P. (2023). Recent trends in non-thermal plasma and plasma activated water: Effect on quality attributes, mechanism of interaction and potential application in food & agriculture. Food Chemistry Advances, 2, 100249, https://doi.org/10.1016/j.focha.2023.100249
  33. Puac, N., Gherardi, M., and Shiratani, M. (2018). Plasma agriculture: A rapidly emerging field. Plasma Processes and Polymers, 15, 1700174, https://doi.org/10.1002/ppap.201700174
  34. Randeniya, L. K., and De Groot, G. J. J. B. (2015). Non-thermal plasma treatment of agricultural seeds for stimulation of germination, removal of surface contamination and other benefits: A review. Plasma Processes and Polymers, 12, 608–623, https://doi.org/10.1002/ppap.201500042
  35. Randhawa, M. A., Khan, A. A., Javed, M. S., and Sajid, M. W. (2018). Chapter 18 - Green Leafy Vegetable: A Health Promoting Source. In R. R. Watson (Ed.), Handbook of Fertility. Nutrition, Diet, Lifestyle and Reproductive Health (pp. 205–220). New York, USA: Academic Press, https://doi.org/10.1016/B978-0-12-800872-0.00018-4
  36. Roberts, J. L., and Moreau, R. (2016). Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives. Food & Function, 7, 3337–3353, https://doi.org/10.1039/c6fo00051g
  37. Romanjek-Fajdetić, N., Benković-Lačić, T., Mirosavljević, K., Antunović, S., Benković, R., Rakić, M., Milošević, S., and Japundžić-Palenkić, B. (2022). Influence of Seed Treated by Plasma Activated Water on the Growth of Lactuca sativa L. Sustainability, 14, 16237, https://doi.org/10.3390/su142316237
  38. Sami, F., Faizan, M., Faraz, A., Siddiqui, H., Yusuf, M., and Hayat, S. (2021). Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress. Nitric Oxide: Biology and Chemistry/Official Journal of the Nitric Oxide Society, 73, 22–38, https://doi.org/10.1007/s40415-013-0013-6
  39. Sharma, H. P., Patel, A. H., and Pal, M. (2021). Effect of plasma activated water (PAW) on fruits and vegetables. American Journal of Food and Nutrition, 9(2), 60–68.
  40. Singleton, V. L., and Rossi, J. A. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152–178, https://doi.org/10.1016/S0076-6879(99)99017-1
  41. Sivachandiran, L., and Khacef, A. (2017). Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: Combined effect of seed and water treatment. RSC Advances, 7, 1822–1832, https://doi.org/10.1039/C6RA24762H
  42. Švubová, R., Slováková, L’, Holubová, L’, Rovňanová, D., Gálová, E., and Tomeková, J. (2021). Evaluation of the impact of cold atmospheric pressure plasma on soybean seed germination. Plants (Basel, Switzerland), 10, 177, https://doi.org/10.3390/plants10010177
  43. Than, H. A. Q., Pham, T. H., Nguyen, D. K. V., Pham, T. H., and Khace, A. (2022). Non-thermal plasma activated water for increasing germination and plant growth of Lactuca sativa L. Plasma Chemistry and Plasma Processing, 42, 73–89, https://doi.org/10.1007/s11090-021-10210-6
  44. Thirumdas, R., Kothakota, A., Annapure, U., Siliveru, K., Blundell, R., Gatt, R. P., and Valdramidis, V. P. (2018). Plasma activated water (Paw): Chemistry, physico-chemical properties, applications in food and agriculture. Trends in Food Science & Technology, 77, 21–31, https://doi.org/10.1016/j.tifs.2018.05.007
  45. Vaka, M. R., Sone, I., Álvarez, R. G., Walsh, J. L., Prabhu, L., Sivertsvik, M., and Fernández, E. N. (2019). Nowards the next-generation disinfectant: Composition, storability and preservation potential of plasma activated water on baby spinach leaves. Foods, 8(12), 692, https://doi.org/10.3390/foods8120692
  46. Wang, J., Cui, Y., Zhang, M., Wang, L., Aihaiti, A., and Maimaitiyiming, R. (2024). Pulsed-control plasma-activated water: An emerging technology to assist ultrasound for fresh-cut produce washing. Ultrasonics Sonochemistry, 102, 106739, https://doi.org/10.1016/j.ultsonch.2023.106739
  47. Wang, Q., Kathariou, S., and Salvi, D. (2023). Plasma-activated water for inactivation of Salmonella Typhimurium avirulent surrogate: Applications in produce and shell egg and understanding the modes of action. LWT, 187, 11533, https://doi.org/10.1016/j.lwt.2023.115331
  48. Zhao, Y., Chen, R., Liu, D., Wang, W., Niu, J., Xia, Y., Qi, Z., Zhao, Z., and Song, Y. (2019). Effect of nonthermal plasma-activated water on quality and antioxidant activity of fresh-cut kiwifruit. IEEE Transactions on Plasma Science, 47, 4811–4817, https://doi.org/10.1109/TPS.2019.2904298
  49. Zhishen, J., Mengcheng, T., and Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555–559, https://doi.org/10.1016/S0308-8146(98)00102-2
DOI: https://doi.org/10.2478/fhort-2025-0007 | Journal eISSN: 2083-5965 | Journal ISSN: 0867-1761
Language: English
Page range: 79 - 90
Submitted on: Mar 28, 2025
Accepted on: Apr 29, 2025
Published on: Aug 6, 2025
Published by: Polish Society for Horticultural Sciences (PSHS)
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Mihaela Blažinkov, Nataša Romanjek Fajdetić, Krunoslav Mirosavljević, Robert Benković, Ljiljana Božić-Ostojić, Dinko Zima, Slavica Antunović, Iva Knezović, Teuta Benković-Lačić, published by Polish Society for Horticultural Sciences (PSHS)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.