Have a personal or library account? Click to login

α-Glucosidase inhibitory flavonoids of Actinidia arguta fruits: Comparison of different cultivars

Open Access
|Oct 2025

References

  1. Ahn, J. H., Park, Y., Jo, Y. H., Kim, S. B., Yeon, S. W., Kim, J. G., Turk, A., Song, J. Y., Kim, Y., Hwang, B. Y., and Lee, M. K. (2020). Organic acid conjugated phenolic compounds of hardy kiwifruit (Actinidia arguta) and their NF-κB inhibitory activity. Food Chemistry, 308, 125666, https://doi.org/10.1016/j.foodchem.2019.125666.
  2. Ahn, J. H., Yeon, S. W., Ryu, S. H., Lee, S., Turk, A., Hwang, B. Y., and Lee, M. K. (2022). Three new succinate-phenolic conjugates from the fruits of Actinidia arguta. Phytochemistry Letters, 48, 128–131, https://doi.org/10.1016/j.phytol.2022.01.019.
  3. Almeida, D., Pinto, D., Santos, J., Vinha, A. F., Palmeira, J., Ferreira, H. N., Rodrigues, F., and Oliveira, B. P. P. (2018). Hardy kiwifruit leaves (Actinidia arguta): An extraordinary source of value-added compounds for food industry. Food Chemistry, 259, 113–121, https://doi.org/10.1016/j.foodchem.2018.03.113.
  4. An, H., Thanh, L. N., Khanh, L. Q., Ryu, S. H., Lee, S., Yeon, S. W., Lee, H. H., Turk, A., Lee, K. Y., Hwang, B. Y., and Lee, M. K. (2023). Characterization of antioxidant and α-glucosidase inhibitory compounds of Cratoxylum formosum ssp. pruniflorum and optimization of extraction condition. Antioxidants (Basel, Switzerland), 12, 511, https://doi.org/10.3390/antiox12020511.
  5. Bieniek, A. (2012). Yield, morphology and biological value of fruits of Actinidia arguta and Actinidia purpurea and some of their hybrid cultivars grown in north-eastern Poland. Acta Scientiarum Polonorum, Hortorum Cultus, 11(3), 117–130.
  6. Ferguson, A. R. (1999). Kiwifruit cultivars: Breeding and selection. Acta Horiculture, 498, 43–51, https://doi.org/10.17660/ActaHortic.1999.498.4.
  7. Ghani, U. (2015). Re-exploring promising α-glucosidase inhibitors for potential development into oral anti-diabetic drugs: Finding needle in the haystack. European Journal of Medicinal Chemistry, 103, 133–162, https://doi.org/10.1016/j.ejmech.2015.08.043.
  8. Han, J. T., Bang, M. H., Chun, O. K., Kim, D. O., Lee, C. Y., and Baek, N. I. (2004). Flavonol glycosides from the aerial parts of Aceriphyllum rossii and their antioxidant activities. Archives of Pharmacal Research, 27, 390–395, https://doi.org/10.1007/BF02980079.
  9. Imperato, F. (2008). A new flavonoid glycoside from the fern Dryopteris villarii. Natural Product Communications, 3, 1709–1712, https://doi.org/10.1177/1934578X0800301026.
  10. Indrianingsih, A. W., Tachibana, S., and Itoh, K. (2015). In vitro evaluation of antioxidant and α-glucosidase inhibitory assay of several tropical and subtropical plants. Procedia Environmental Sciences, 28, 639, https://doi.org/10.1016/j.proenv.2015.07.075.
  11. Itoh, T., Ninomiya, M., Yasuda, M., Koshikawa, K., Deyashiki, Y., Nozawa, Y., Akao, Y., and Koketsu, M. (2009). Inhibitory effects of flavonoids isolated from Fragaria ananassa Duch on IgE-mediated degranulation in rat basophilic leukemia RBL-2H3. Bioorganic and Medicinal Chemistry, 17, 5374–5379, https://doi.org/10.1016/j.bmc.2009.06.050.
  12. Jaramillo, K., Dawid, C., Hofmann, T., Fujimoto, Y., and Osorio, C. (2011). Identification of antioxidative flavonols and anthocyanins in Sicana odorifera fruit peel. Journal of Agricultural and Food Chemistry, 59, 975–983, https://doi.org/10.1021/jf103151n.
  13. Jeon, S. H., Chun, W. J., Choi, Y. J., and Kwon, Y. S. (2008). Cytotoxic constituents from the bark of Salix hulteni. Archves of Pharmacal Research, 31, 978–982, https://doi.org/10.1007/s12272-001-1255-9.
  14. Krupa, T., Klimek, K., and Zaraś-Januszkiewicz, E. (2022). Nutritional values of minikiwi fruit (Actinidia arguta) after storage: Comparison between DCA new technology and ULO and CA. Molecules, 27(13), 4313, https://doi.org/10.3390/molecules27134313.
  15. Latocha, P. (2017). The nutritional and health benefits of kiwiberry (Actinidia arguta) – A review. Plant Foods and Human Nutrition (Dordrecht, Netherlands), 72, 325–334, https://doi.org/10.1007/s11130-017-0637-y.
  16. Lee, Y. G., Cho, J. Y., Kim, C. M., Lee, S. H., Kim, W. S., Jeon, T. I., Park, K. H., and Moon, J. H. (2013). Coumaroyl quinic acid derivatives and flavonoids from immature pear (Pyrus pyrifolia Nakai) fruit. Food Science and Biotechnology, 22, 803–810, https://doi.org/10.1007/s10068-013-0148-z.
  17. Leontowicz, H., Leontowicz, M., Latocha, P., Jesion, I., Park, Y. S., Katrich, E., Barasch, D., Nemirovski, A., and Gorinstein, S. (2016). Bioactivity and nutritional properties of hardy kiwi fruit Actinidia arguta in comparison with Actinidia deliciosa 'Hayward' and Actinidia eriantha 'Bidan'. Food Chemistry, 196, 281–291, https://doi.org/10.1016/j.foodchem.2015.08.127.
  18. Lim, E. K., Ashford, D. A., Hou, B. K., Jackson, R. G., and Bowles, D. J. (2004). Arabidopsis glycosyltransferases as biocatalysts in fermentation for regioselective synthesis of diverse quercetin glucosides. Biotechnology and Bioengneering, 87, 623–631, https://doi.org/10.1002/bit.20154.
  19. Nonaka, G. I., and Nishioka, I. (1982). Tannins and related compounds VII. Phenylpropanoid-substituted epicatechins, cinchonains from Cinchona succirubra. Chemical and Pharmaceutical Bulletin, 30, 4268–4276, https://doi.org/10.1248/cpb.30.4268.
  20. Pizzolatti, M. G., Venson, A. F., Junior, A. S., Smania, E. F. A., and Braz-Filho, R. (2002). Two epimeric flavalignans from Trichilia catigua (Meliaceae) with antimicrobial activity. Journal of. Bioscience, 57, 483–488, https://doi.org/10.1515/znc-2002-5-614.
  21. Proença, C., Ribeiro, D., Freitas, M., and Fernandes, E. (2022). Flavonoids as potential agents in the management of type 2 diabetes through the modulation of alpha-amylase and alpha-glucosidase activity: A review. Critical Reviews in Food Science and Nutrition, 62, 3137–3207, https://doi.org/10.1080/10408398.2020.1862755.
  22. Ryu, S. H., Ahn, J. H., Turk, A., Kim, S. B., Hwang, B. Y., and Lee, M. K. (2024). Argutinic acid, a new triterpenoid from the fruits of Actinidia arguta. Natural Product Sciences, 30, 208–211, https://doi.org/10.20307/nps.2024.30.3.208.
  23. Scharbert, S., Holzmann, N., and Hofmann, T. (2004). Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. Journal of Agricultural and Food Chemistry, 52, 3498–3508, https://doi.org/10.1021/jf049802u.
  24. Sun, F., Shen, L., and Ma, Z. (2011). Screening for ligands of human aromatase from mulberry (Mori alba L.) leaf by using high-performance liquid chromatography/tandem mass spectrometry. Food Chemistry, 126, 1337–1343, https://doi.org/10.1016/j.foodchem.2010.11.096.
  25. Wan, C. P., Yuan, T., Cirello, A. L., and Seeram, N. P. (2012). Antioxidant and α-glucosidase inhibitory phenolics isolated from highbush blueberry flowers. Food Chemistry, 135, 1929–1937, https://doi.org/10.1016/j.foodchem.2012.06.056.
  26. Wojdylo, A., Nowicka, P., Oszmiański, J., and Golis, T. (2017). Phytochemical compounds and biological effects of Actinidia fruit. Journal of Functional Foods, 30, 194–202, https://doi.org/10.1016/j.jff.2017.01.018.
  27. Yao, D., and Brownlee, M. (2010). Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes, 59, 249–255, https://doi.org/10.2337/db09-0801.
  28. Yoshida, T., Namba, O., Chen, L., Liu, Y., and Okuda, T. (1990). Ellagitannin monomers and oligomers from Euphorbia prostrata Arr. and oligomers from Loropetalum chinense Oliv. Chemical and Pharmaceutical Bulletin, 38, 3296–3302, https://doi.org/10.1248/cpb.38.3296.
  29. Zhang, P., Li, T., Wu, X., Nice, E. C., Huang, C., and Zhang, Y. (2020). Oxidative stress and diabetes: Antioxidative strategies. Frontier of Medicines, 14, 583–600, https://doi.org/10.1007/s11684-019-0729-1
  30. Zhang, H., Teng, K., and Zang, H. (2023). Actinidia arguta (Sieb. et Zucc.) planch. ex Miq.: A review of phytochemistry and pharmacology. Molecules, 28, 7820, https://doi.org/10.3390/molecules28237820.
DOI: https://doi.org/10.2478/fhort-2025-0002 | Journal eISSN: 2083-5965 | Journal ISSN: 0867-1761
Language: English
Page range: 25 - 31
Submitted on: Jul 4, 2024
Accepted on: Mar 3, 2025
Published on: Oct 14, 2025
Published by: Polish Society for Horticultural Sciences (PSHS)
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Se Hwan Ryu, Hak Hyun Lee, Jong Hoon Ahn, Ayman Turk, Youngki Park, Seon Beom Kim, Bang Yeon Hwang, Mi Kyeong Lee, published by Polish Society for Horticultural Sciences (PSHS)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.