References
- Ahn, J. H., Park, Y., Jo, Y. H., Kim, S. B., Yeon, S. W., Kim, J. G., Turk, A., Song, J. Y., Kim, Y., Hwang, B. Y., and Lee, M. K. (2020). Organic acid conjugated phenolic compounds of hardy kiwifruit (Actinidia arguta) and their NF-κB inhibitory activity. Food Chemistry, 308, 125666, https://doi.org/10.1016/j.foodchem.2019.125666.
- Ahn, J. H., Yeon, S. W., Ryu, S. H., Lee, S., Turk, A., Hwang, B. Y., and Lee, M. K. (2022). Three new succinate-phenolic conjugates from the fruits of Actinidia arguta. Phytochemistry Letters, 48, 128–131, https://doi.org/10.1016/j.phytol.2022.01.019.
- Almeida, D., Pinto, D., Santos, J., Vinha, A. F., Palmeira, J., Ferreira, H. N., Rodrigues, F., and Oliveira, B. P. P. (2018). Hardy kiwifruit leaves (Actinidia arguta): An extraordinary source of value-added compounds for food industry. Food Chemistry, 259, 113–121, https://doi.org/10.1016/j.foodchem.2018.03.113.
- An, H., Thanh, L. N., Khanh, L. Q., Ryu, S. H., Lee, S., Yeon, S. W., Lee, H. H., Turk, A., Lee, K. Y., Hwang, B. Y., and Lee, M. K. (2023). Characterization of antioxidant and α-glucosidase inhibitory compounds of Cratoxylum formosum ssp. pruniflorum and optimization of extraction condition. Antioxidants (Basel, Switzerland), 12, 511, https://doi.org/10.3390/antiox12020511.
- Bieniek, A. (2012). Yield, morphology and biological value of fruits of Actinidia arguta and Actinidia purpurea and some of their hybrid cultivars grown in north-eastern Poland. Acta Scientiarum Polonorum, Hortorum Cultus, 11(3), 117–130.
- Ferguson, A. R. (1999). Kiwifruit cultivars: Breeding and selection. Acta Horiculture, 498, 43–51, https://doi.org/10.17660/ActaHortic.1999.498.4.
- Ghani, U. (2015). Re-exploring promising α-glucosidase inhibitors for potential development into oral anti-diabetic drugs: Finding needle in the haystack. European Journal of Medicinal Chemistry, 103, 133–162, https://doi.org/10.1016/j.ejmech.2015.08.043.
- Han, J. T., Bang, M. H., Chun, O. K., Kim, D. O., Lee, C. Y., and Baek, N. I. (2004). Flavonol glycosides from the aerial parts of Aceriphyllum rossii and their antioxidant activities. Archives of Pharmacal Research, 27, 390–395, https://doi.org/10.1007/BF02980079.
- Imperato, F. (2008). A new flavonoid glycoside from the fern Dryopteris villarii. Natural Product Communications, 3, 1709–1712, https://doi.org/10.1177/1934578X0800301026.
- Indrianingsih, A. W., Tachibana, S., and Itoh, K. (2015). In vitro evaluation of antioxidant and α-glucosidase inhibitory assay of several tropical and subtropical plants. Procedia Environmental Sciences, 28, 639, https://doi.org/10.1016/j.proenv.2015.07.075.
- Itoh, T., Ninomiya, M., Yasuda, M., Koshikawa, K., Deyashiki, Y., Nozawa, Y., Akao, Y., and Koketsu, M. (2009). Inhibitory effects of flavonoids isolated from Fragaria ananassa Duch on IgE-mediated degranulation in rat basophilic leukemia RBL-2H3. Bioorganic and Medicinal Chemistry, 17, 5374–5379, https://doi.org/10.1016/j.bmc.2009.06.050.
- Jaramillo, K., Dawid, C., Hofmann, T., Fujimoto, Y., and Osorio, C. (2011). Identification of antioxidative flavonols and anthocyanins in Sicana odorifera fruit peel. Journal of Agricultural and Food Chemistry, 59, 975–983, https://doi.org/10.1021/jf103151n.
- Jeon, S. H., Chun, W. J., Choi, Y. J., and Kwon, Y. S. (2008). Cytotoxic constituents from the bark of Salix hulteni. Archves of Pharmacal Research, 31, 978–982, https://doi.org/10.1007/s12272-001-1255-9.
- Krupa, T., Klimek, K., and Zaraś-Januszkiewicz, E. (2022). Nutritional values of minikiwi fruit (Actinidia arguta) after storage: Comparison between DCA new technology and ULO and CA. Molecules, 27(13), 4313, https://doi.org/10.3390/molecules27134313.
- Latocha, P. (2017). The nutritional and health benefits of kiwiberry (Actinidia arguta) – A review. Plant Foods and Human Nutrition (Dordrecht, Netherlands), 72, 325–334, https://doi.org/10.1007/s11130-017-0637-y.
- Lee, Y. G., Cho, J. Y., Kim, C. M., Lee, S. H., Kim, W. S., Jeon, T. I., Park, K. H., and Moon, J. H. (2013). Coumaroyl quinic acid derivatives and flavonoids from immature pear (Pyrus pyrifolia Nakai) fruit. Food Science and Biotechnology, 22, 803–810, https://doi.org/10.1007/s10068-013-0148-z.
- Leontowicz, H., Leontowicz, M., Latocha, P., Jesion, I., Park, Y. S., Katrich, E., Barasch, D., Nemirovski, A., and Gorinstein, S. (2016). Bioactivity and nutritional properties of hardy kiwi fruit Actinidia arguta in comparison with Actinidia deliciosa 'Hayward' and Actinidia eriantha 'Bidan'. Food Chemistry, 196, 281–291, https://doi.org/10.1016/j.foodchem.2015.08.127.
- Lim, E. K., Ashford, D. A., Hou, B. K., Jackson, R. G., and Bowles, D. J. (2004). Arabidopsis glycosyltransferases as biocatalysts in fermentation for regioselective synthesis of diverse quercetin glucosides. Biotechnology and Bioengneering, 87, 623–631, https://doi.org/10.1002/bit.20154.
- Nonaka, G. I., and Nishioka, I. (1982). Tannins and related compounds VII. Phenylpropanoid-substituted epicatechins, cinchonains from Cinchona succirubra. Chemical and Pharmaceutical Bulletin, 30, 4268–4276, https://doi.org/10.1248/cpb.30.4268.
- Pizzolatti, M. G., Venson, A. F., Junior, A. S., Smania, E. F. A., and Braz-Filho, R. (2002). Two epimeric flavalignans from Trichilia catigua (Meliaceae) with antimicrobial activity. Journal of. Bioscience, 57, 483–488, https://doi.org/10.1515/znc-2002-5-614.
- Proença, C., Ribeiro, D., Freitas, M., and Fernandes, E. (2022). Flavonoids as potential agents in the management of type 2 diabetes through the modulation of alpha-amylase and alpha-glucosidase activity: A review. Critical Reviews in Food Science and Nutrition, 62, 3137–3207, https://doi.org/10.1080/10408398.2020.1862755.
- Ryu, S. H., Ahn, J. H., Turk, A., Kim, S. B., Hwang, B. Y., and Lee, M. K. (2024). Argutinic acid, a new triterpenoid from the fruits of Actinidia arguta. Natural Product Sciences, 30, 208–211, https://doi.org/10.20307/nps.2024.30.3.208.
- Scharbert, S., Holzmann, N., and Hofmann, T. (2004). Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. Journal of Agricultural and Food Chemistry, 52, 3498–3508, https://doi.org/10.1021/jf049802u.
- Sun, F., Shen, L., and Ma, Z. (2011). Screening for ligands of human aromatase from mulberry (Mori alba L.) leaf by using high-performance liquid chromatography/tandem mass spectrometry. Food Chemistry, 126, 1337–1343, https://doi.org/10.1016/j.foodchem.2010.11.096.
- Wan, C. P., Yuan, T., Cirello, A. L., and Seeram, N. P. (2012). Antioxidant and α-glucosidase inhibitory phenolics isolated from highbush blueberry flowers. Food Chemistry, 135, 1929–1937, https://doi.org/10.1016/j.foodchem.2012.06.056.
- Wojdylo, A., Nowicka, P., Oszmiański, J., and Golis, T. (2017). Phytochemical compounds and biological effects of Actinidia fruit. Journal of Functional Foods, 30, 194–202, https://doi.org/10.1016/j.jff.2017.01.018.
- Yao, D., and Brownlee, M. (2010). Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes, 59, 249–255, https://doi.org/10.2337/db09-0801.
- Yoshida, T., Namba, O., Chen, L., Liu, Y., and Okuda, T. (1990). Ellagitannin monomers and oligomers from Euphorbia prostrata Arr. and oligomers from Loropetalum chinense Oliv. Chemical and Pharmaceutical Bulletin, 38, 3296–3302, https://doi.org/10.1248/cpb.38.3296.
- Zhang, P., Li, T., Wu, X., Nice, E. C., Huang, C., and Zhang, Y. (2020). Oxidative stress and diabetes: Antioxidative strategies. Frontier of Medicines, 14, 583–600, https://doi.org/10.1007/s11684-019-0729-1
- Zhang, H., Teng, K., and Zang, H. (2023). Actinidia arguta (Sieb. et Zucc.) planch. ex Miq.: A review of phytochemistry and pharmacology. Molecules, 28, 7820, https://doi.org/10.3390/molecules28237820.