Have a personal or library account? Click to login
Effect of low frequency magnetic field (LFMF) on germination and vigour of accelerated aged radish (Raphanus sativus L.) seeds Cover

Effect of low frequency magnetic field (LFMF) on germination and vigour of accelerated aged radish (Raphanus sativus L.) seeds

Open Access
|Dec 2024

References

  1. Abdel Latef, A. A. H., Dawood, M. F. A., Hassanpour, H., Rezayian, M., and Younes, N. A. (2020). Impact of the static magnetic field on growth, pigments, osmolytes, nitric oxide, hydrogen sulfide, phenylalanine ammonia-lyase activity, antioxidant defense system, and yield in lettuce. Biology, 9, 172, https://doi.org/10.3390/biology9070172.
  2. Abobatta, W. F. (2019). Overview of role of magnetizing treated water in agricultural sector development. Advances in Agricultural Technology and Plant Sciences, 2(1), 180023, https://academicstrive.com/AATPS/AATPS180023.pdf.
  3. Alvarez, J., Martinez, E., Carbonell, V., and Florez, M. (2020). Effects of polyethylene glycol and sodium chloride stress on water absorption of magneto-primed triticale seeds. Romanian Reports in Physics, 72, 708, https://rrp.nipne.ro/2020/AN72708.pdf.
  4. Anonymous. (2012). International rules for seed testing (Edition 2012 ed.). Bassersdorf: The International Seed Testing Association (ISTA). ISBN 13 978-3-906549-68-62.
  5. Baghel, L., Kataria, S., and Jain, M. (2019). Mitigation of adverse effects of salt stress on germination, growth, photosynthetic efficiency and yield in maize (Zea mays L.) through magnetopriming. Acta Agrobotanica, 72(1), 1757, https://doi.org/10.5586/aa.1757.
  6. Borc, R., Dudziak, A., and Jaśkowska, A. (2012). Ultraweak luminescence of the Characeae plants under the circumstances of cyclical changes in temperature. Current Topics in Biophysics, 34(1), 37–44, https://doi.org/10.2478/v10214-011-0006-1.
  7. Bukhari, S. A., Tanveer, M., Mustafa, G., and Zia-Ud-Den, N. (2021). Magnetic field stimulation effect on germination and antioxidant activities of presown hybrid seeds of sunflower and its seedlings. Journal of Food Quality, 2021 5594183, https://doi.org/10.1155/2021/5594183.
  8. Copeland, L. O. and Mcdonald, M. B. (Eds.) (1985). Seed vigor and vigor test. In Principles of seed science and technology (2nd ed., pp. 121–144). NY, USA: Springer New York.
  9. Da Silva, J. A., and Dobránszki, J. (2016). Magnetic fields: How is plant growth and development impacted? Protolasma, 253, 231–248, https://doi.org/10.1007/s00709-015-0820-7.
  10. De Sousa Araújo, S., Paparella, S., Dondi, D., Bentivoglio, A., Carbonera, D., and Balestrazzi, A. (2016). Physical methods for seed invigoration: Advantages and challenges in seed technology. Frontiers in Plant Science, 7, 646, https://doi.org/10.3389/fpls.2016.00646.
  11. Du, J., Deng, T., Cao, B., Wang, Z., Yang, M., and Han, J. (2023). The application and trend of ultra-weak photon emission in biology and medicine. Frontiers in Chemistry, 11, 1140128, https://doi.org/10.3389/fchem.2023.1140128.
  12. Ebner, E. (2020). Consideration for initial pulse of germination. Journal of Plant Biochemistry and Physiology, 8, 250, https://doi.org/10.35248/2329-9029.20.8.250.
  13. Farooq, M., Usman, M., Nadeem, F., Rehman, H. U., Wahid, A., Basra, S. M. A., and Siddique, K. H. M. (2019). Seed priming in field crops: Potential benefits, adoption and challenges. Crop and Pasture Science, 70, 731–771, https://doi.org/10.1071/CP18604.
  14. Footitt, S., Palleschi, S., Fazio, E., Palomba, R., FinchSavage, W. E., and Silvestroni, L. (2016). Ultraweak photon emission from the seed coat in response to temperature and humidity-a potential mechanism for environmental signal transduction in the soil seed bank. Photochemistry and Photobiology, 92(5), 678–687, https://doi.org/10.1111/php.12616.
  15. Han, J. L., Wang, T. Y., Yu, W. L., Ni, D. P., Yin, W. J., Xu, L. H., and Wang, J. H. (2008). Effect of artificial ageing and magnetic treatment on physiological and biochemical indices of Chinese cabbage seeds. Shandong Agricultural Sciences, 7, 24–27, (in Chinese), https://doi.org/10.14083/j.issn.1001-4942.2008.07.031.
  16. Harb, A. M., Alnawateer, B. M., and Abu-Aljarayesh, I. (2021). Influence of static magnetic field seed treatment on the morphological and the biochemical changes in lentil seedlings (Lens culinaris Medik.). Jordan Journal of Biological Sciences, 14(1), 179–186, https://doi.org/10.54319/jjbs/140123.
  17. Hołuowicz, R. (2016). Control in seed production. In R. Hołuowicz (Ed.), Seed production and technology (pp. 27–31). Poznań, Poland: Poznań University of Life Sciences Press.
  18. Hołuowicz, R. (2022). Plant breeding, seed production and technology. In R. Hołuowicz (Ed.), Selected topics in horticulture (pp. 11–46). Poznań, Poland: Poznań University of Life Sciences Press.
  19. Hołuowicz, R., kubisz, L., Gauza, M., Tong, Y. L., and Hojan-Jezierska, D. (2014). Effect of low frequency magnetic field (LFMF) on the germination of seeds and selected useful characters of onion (Allium cepa L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42(1), 168–172, https://doi.org/10.15835/nbha4219131.
  20. Hozayn, M., Elaoud, A., El-Monem, A. A. A., and Salah, N. B. (2021). Effect of magnetic field on growth and yield of barley treated with different salinity levels. Arabian Journal of Geosciences, 14, 701, https://doi.org/10.1007/s12517-021-07077-4.
  21. Jalink, H., and Van Der Schör, R. (1999). Seed calculator version 2.1 license number: 100200122. Plant Research International, Wageningen University & Research, Wageningen, the Netherlands.
  22. Jócsák, I., Gyalog, H., Hoffmann, R., and Somfalvi-Tóth, K. (2022). In-vivo biophoton emission, physiological and oxidative responses of biostimulant-treated winter wheat (Triticum eastivum L.) as seed priming possibility, for heat stress alleviation. Plants (Basel, Switzerland), 11, 640, https://doi.org/10.3390/plants11050640.
  23. Johnson, R., and Puthur, J. T. (2021). Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress. Plant Physiology and Biochemistry, 162, 247–257, https://doi.org/10.1016/j.plaphy.2021.02.034.
  24. Khabiri, F., Hagens, R., Smuda, C., Soltau, A., Schreiner, V., Wenck, H., Wittern, K. P., Duchstein, H. J., and Mei, W. (2008). Non-invasive monitoring of oxidative skin stress by ultraweak photon emission (UPE)-measurement. I: Mechanisms of UPE of biological materials. Skin Research and Technology, 14(1), 103–111, https://doi.org/10.1111/j.1600-0846.2007.00205.x.
  25. Kobayashi, M., Sasaki, K., Enomoto, M., and Ehara, Y. (2007). Highly sensitive determination of transient generation of biophotons during hypersensitive response to cucumber mosaic virus in cowpea. Journal of Experimental Botany, 58(3), 465–472, https://doi.org/10.1093/jxb/erl215.
  26. Liu, Y. H., Xu, L. H., Tang, X. K., and Yu, X. M. (2003). The effect of magnetic field treatment on artificially ageing pepper seed. Journal of Jinan University, 17(3), 286–288, (in Chinese), https://doi.org/10.13349/j.cnki.jdxbn.2003.03.025.
  27. Ma, J., Zhu, Z., and Zhu, Y. (2002). Research on detecting technology of biophotons. Proceedings of SPIE, 4634, 135–141, https://doi.org/10.1117/12.463832.
  28. Mackenzie, A. M., Smith, H. E., Mould, R. R., Bell, J. D., Nunn, A. V. W., and Botchway, S. W. (2023). Rooting out ultraweak photon emission a-mung bean sprouts. Journal of Photochemistry and Photobiology, 19, 1002244, https://doi.org/10.1016/j.jpap.2023.100224.
  29. Maffei, M. E. (2014). Magnetic field effects on plant growth, development, and evolution. Frontiers in plant science, 5, 44, https://doi.org/10.3389/fpls.2014.00445.
  30. Menegatti, R. D., Oliveira, L. O., Costa, Áv. L., Braga, E. J. B., and Bianchi, V. J. (2019). Magnetic field and gibberellic acid as pre-germination treatments of passion fruit seeds. Ciência Agrícola Rio Largo, 17, 15–22, https://doi.org/10.28998/rca.v17i1.6522.
  31. Mould, R. R., Thomas, E. L., Guy, G., Nunn, A. V., and Bell, J. D. (2022). Cell-cell death communication by signals passing through non-aqueous environments: A reply. Results in Chemistry, 4, 100538, https://doi.org/10.1016/j.rechem.2022.100538.
  32. Nonnecke, I. L. (1989). Radish. In I. L. Nonnecke (Ed.), Vegetable production (pp. 339–346). New York, USA: An Avi Book.
  33. Nyakane, N. E., Markus, E. D., and Sedibe, M. M. (2019). The effects of magnetic fields on plant growth: A comprehensive review. International Journal of Food Engineering, 5(1), 79–87, https://doi.org/10.18178/ijfe.5.1.79-87.
  34. Padula, L., Xia, X. Z., szopińska, D., and Hołuowicz, R. (2022). Effect of air temperature and relative humidity on the stored Welsh onion (Allium fistulosum L.) seeds. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(4), 12956, https://doi.org/10.15835/nbha50412956.
  35. Pagano, A., Macovei, A., Xia, X., Padula, G., Hołuowicz, R., and Balestrazzi, a. (2023). Seed priming applied to onion-like crops: State of art and open questions. Agronomy, 13(2), 288, https://doi.org/10.3390/agronomy13020288.
  36. Radhakrishnan, R. (2019). Magnetic field regulates plant functions, growth and enhance tolerance against environment stresses. Physiology and Molecular Biology of Plants, 25(5), 1107–1119, https://doi.org/10.1007/s12298-019-00699-9.
  37. Rhaman, M. S., Rauf, F., Tania, S. S., and Khatun, M. (2020). Seed priming methods: Application in field crops and future perspectives. Asian Journal of Research in Crop Science, 5(2), 8–19, https://doi.org/10.9734/AJRCS/2020/v5i230091.
  38. Rifina, E. J., Ratish Ramanan, K., and Mahendran, R. (2019). Emerging technology applications for improving seed germination. Trends in Food Science and Technology, 86, 95–108, https://doi.org/10.1016/j.tifs.2019.02.029.
  39. Samarrai, G. F. A., Mahdi, W. M., Khaleel, R. I., and Abbas, S. Z. (2022). Effect of using magnetized water and chemical fertilizer on some vegetative traits and seed content of some nutrients of chickpea plant, Cicer arietinum L. International Journal of Agricultural and Statistical Sciences, 18(1), 47–55, https://connectjournals.com/03899.2022.18.47.
  40. Sarraf, M., Kataria, S., Taimourya, H., Santos, L. O., Menegatti, R. D., Jain, M., Ihtisham, M., and Liu, S. (2020). Magnetic field (MF) applications in plants: An overview. Plants, 9, 1139, https://doi.org/10.3390/plants9091139.
  41. Singh, P., and Asati, B. S. (2018). Principles of vegetable seed production. In Seed production technology of vegetables (pp. 84–96). New Delhi, India: Delhi Daya Publishing House India.
  42. Souza-Torres, A. D., Sueiro-Pelegrín, L., Zambrano-Reyes, M., Macías-Socarras, I., González-Posada, M., and García-Fernández, D. (2020). Extremely low frequency non-uniform magnetic fields induce changes in water relations, photosynthesis and tomato plant growth. International Journal of Radiation Biology, 96(7), 951–957, https://doi.org/10.1080/09553002.2020.1748912.
  43. Sun, C., Li, X., and Guo, J. (2023). Relationship between photosystem activity and ultraweak luminescence excitation in Cerasus humilis leaves under salt stress. Plant Physiology and Biochemistry, 196, 1032–1045, https://doi.org/10.1016/j.plaphy.2023.03.005.
  44. Vahalova, P., and Cifra, M. (2023). Biological autoluminescence as a perturbance-free method for monitoring oxidation in biosystems. Progress in Biophysics and Molecular Biology, 177, 80–108, https://doi.org/10.1016/j.pbiomolbio.2022.10.009.
  45. Volodyaev, I., and Beloussov, L. V. (2015). Revisiting the mitogenetic effect of ultra-weak photon emission. Frontiers in Physiology, 6, 241, https://doi.org/10.3389/fphys.2015.00241.
  46. Xi, G., He, R., Liu, K., and Zhao, Y. (2014). Feasibility of evaluation method for spinach leaf senescence based on biological ultraweak photon emission. Transactions of the Chinese Society of Agricultural Engineering, 30(17), 268–275, https://doi.org/10.3969/j.issn.1002-6819.2014.17.034.
  47. Xia, X. Z., Padula, G., kubisz, L., and Hołuowicz, R. (2020). Effect of low frequency magnetic field (LFMF) on seed quality of radish (Raphanus sativus L.) seeds. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(3), 1458–1464, https://doi.org/10.15835/nbha48311918. Received: May 9, 2024; accepted: August 15, 2024
DOI: https://doi.org/10.2478/fhort-2024-0027 | Journal eISSN: 2083-5965 | Journal ISSN: 0867-1761
Language: English
Page range: 425 - 434
Submitted on: May 9, 2024
Accepted on: Aug 15, 2024
Published on: Dec 3, 2024
Published by: Polish Society for Horticultural Sciences (PSHS)
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Xianzong Xia, Anna Zająс-Woźnialis, Gregorio Padula, Leszek Kubisz, Roman Hołubowicz, published by Polish Society for Horticultural Sciences (PSHS)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.