References
- Amorim, L. L. B., Da Fonseca Dos Santos, R., Neto, J. P. B., Guida-Santos, M., Crovella, S., and Benko-Iseppon, A. M. (2017). Transcription factors involved in plant resistance to pathogens. Current Protein and Peptide Science, 18(4), 335–351, doi: 10.2174/1389203717666160619185308.
- Bari, R., and Jones, J. D. G. (2009). Role of plant hormones in plant defense responses. Plant Molecular Biology, 69(4), 473–488, doi: 10.1007/s11103-008-9435-0.
- Bordenave, C. D., Escaray, F. J., Menendez, A. B., Serna, E., Carrasco, P., Ruiz, O. A., and Gárriz, A. (2013). Defense responses in two ecotypes of Lotus japonicus against non-pathogenic Pseudomonas syringae. PLoS ONE, 8(12), e83199, doi: 10.1371/journal.pone.0083199.
- Bu, D. C., Luo, H. T., Huo, P. P., Wang, Z. H., Zhang, S., He, Z. H., Wu, Y., Zhao, L. H., Liu, J. J., Guo, J. C., Fang, S. S., Cao, W. C., Yi, L., Zhao, Y., and Kong, L. (2021). KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Research, 49(W1), W317–W325, doi: 10.1093/nar/gkab447.
- Cheng, X., Tian, C. J., Li, A. N., and Qiu, J. L. (2012). Advances on molecular mechanisms of plant-pathogen interactions. Hereditas, 34(2), 134–144, doi: 10.3724/SP.J.1005.2012.00134.
- Chi, Y. J., Yang, Y., Zhou, Y., Zhou, J., Fan, B. F., Yu, J. Q., and Chen, Z. X. (2013). Protein-protein interactions in the regulation of WRKY transcription factors. Molecular Plant, 6(2), 287–300, doi: 10.1093/mp/sst026.
- Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nüernberger, T., Jones, J. D. G., Felix, G., and Boller, T. (2007). A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defense. Nature, 448(7152), 497–500, doi: 10.1038/nature05999.
- Christianson, J. A., Dennis, E. S., Llewellyn, D. J., and Wilson, I. W. (2010). ATAF NAC transcription factors: Regulators of plant stress signaling. Plant Signaling and Behavior, 5(4), 428–432, doi: 10.4161/psb.5.4.10847.
- Cui, X., Yan, Q., Gan, S. P., Xue, D., Wang, H. T., Xing, H., Zhao, J. M., and Guo, N. (2019). GmWRKY40, a member of the WRKY transcription factor genes identified from Glycine max L., enhanced the resistance to Phytophthora sojae. BMC Plant Biology, 19(1), 598, doi: 10.1186/s12870-019-2132-0.
- Dong, N. Q., and Lin, H. X. (2021). Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions. Journal of Integrative Plant Biology, 63(1), 180–209, doi: 10.1111/jipb.13054.
- Everaert, C., Luypaert, M., Maag, J. L. V., Cheng, Q. X., Dinger, M. E., Hellemans, J., and Mestdagh, P. (2017). Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-qPCR expression data. Scientific Reports, 7(1), 1559, doi: 10.1038/s41598-017-01617-3.
- Feller, A., Machemer, K., Braun, E. L., and Grotewold, E. (2011). Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. The Plant Journal, 66(1), 94–116, doi: 10.1111/j.1365-313X.2010.04459.x.
- Fu, Y. Y., Li, J., Wu, H., Jiang, S. J., Zhu, Y. Y., Liu, C. Y., Xu, W. J., Li, Q., and Yang, L. P. (2022). Analyses of Botrytis cinerea-responsive LrWRKY genes from Lilium regale reveal distinct roles of two LrWRKY transcription factors in mediating responses to B. cinerea. Plant Cell Reports, 41, 995–1012, doi: 10.1007/s00299-022-02833-6.
- Han, L., Li, G. J., Yang, K. Y., Mao, G. H., Wang, R. G., Liu, Y. D., and Zhang, S. Q. (2010). Mitogen-activated protein kinase 3 and 6 regulate botrytis cinerea-induced ethylene production in Arabidopsis. Plant Journal, 64(1), 114–127, doi: 10.1111/j.1365-313x.2010.04318.x.
- Jackson, I. L., and Ukwe, C. V. (2022). Effects of pharmaceutical care interventions on humanistic outcomes in hypertensive people living with HIV: Results of a randomized controlled trial. International Journal of Pharmacy Practice, 30(3), 261–267, doi: 10.1093/ijpp/riac017.
- Joo, S., Liu, Y. D., Lueth, A., and Zhang, S. Q. (2008). MAPK phosphorylation-induced stabilization of ACS6 protein is mediated by the non-catalytic C-terminal domain, which also contains the cis-determinant for rapid degradation by the 26S proteasome pathway. Plant Journal, 54(1), 129–140, doi: 10.1111/j.1365-313X.2008.03404.x.
- Jose, R. C., Bengyella, L., Handique, P. J., and Talukdar, N. C. (2019). Cellular and proteomic events associated with localized formation of smut-gall during Zizania latifolia – Ustilago esculenta interaction. Microbial Pathogenesis, 126, 79–84, doi: 10.1016/j.micpath.2018.10.028.
- Kakhki, R. K., Neshani, A., Sankian, M., Ghazvini, K., Hooshyar, A., and Sayadi, M. (2019). The short-chain dehydrogenases/reductases (SDR) gene: A new specific target for rapid detection of Mycobacterium tuberculosis complex by modified comparative genomic analysis. Infection, Genetics and Evolution, 70, 158–164, doi: 10.1016/j.meegid.2019.01.012.
- Khata, E. M., Anthony, K., and Clavin, O. C. (2019). Application of mathematical principles in analysis of impact energy as a basis of crush severity in vehicle accidents. International Journal of Scientific and Engineering Research, 10(7), 1676–1683, doi: 10.14299/ijser.2019.07.13.
- Li, J., Lu, Z. Y., Yang, Y., Hou, J. F., Yuan, L. Y., Chen, G. H., Wang, C. G., Jia, S. K., Feng, X. M., and Zhu, S. D. (2021). Transcriptome analysis reveals the symbiotic mechanism of Ustilago esculenta-induced gall formation of Zizania latifolia. Molecular Plant-Microbe Interactions, 34(2), 168–185, doi: 10.1094/MPMI-05-20-0126-R.
- Li, F., Zhang, J. F., Zhong, H. Y., and Chen, J. M. (2022). Germicide fenaminosulf promots gall formation of Zizania latifolia without directly affecting the growth of endophytic fungus Ustilago esculenta. BMC Plant Biology, 22(1), 418, doi: 10.1186/s12870-022-03803-6.
- Li, W. T., Zhu, Z. W., Chern, M., Yin, J. J., Yang, C., Ran, L., Cheng, M. P., He, M., Wang, K., Wang, J., Zhou, X. G., Zhu, X. B., Chen, Z. X., Wang, J. C., Zhao, W., Ma, B. T., Qin, P., Chen, W. L., Wang, Y. P., Liu, J. L., Wang, W. M., Wu, X. J., Li, P., Wang, J. R., Zhu, L. H., Li, S. G., and Chen, X. W. (2017). A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell, 170(1), 114–126. e15, doi: 10.1016/j.cell.2017.06.008.
- Liu, S. L. (2018). Screening and resistant mechanism of VaHAESA and VaNPR1 in grapevine resist downy mildew. Beijing, China: China Agricultural University.
- Liu, Q., You, W. Y., Yu, X. P., Ruan, S. L., Cui, H. F., Ma, H. S., and Ye, Z. H. (2010). A preliminary study on proteome variations associated with gall formation in Zizania latifolia Turcz. Plant Molecular Biology Reporter, 29(2), 360–368, doi: 10.1007/s11105-010-0236-7.
- Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15, 550, doi: 10.1186/s13059-014-0550-8.
- Qiu, J. L., Fiil, B. K., Petersen, K., Nielsen, H. B., Botanga, C. J., Thorgrimsen, S., Palma, K., Suarez-Rodriguez, M. C., Sandbech-Clausen, S., Lichota, J., Brodersen, P., Grasser, K. D., Mattsson, O., Glazebrook, J., Mundy, J., and Petersen, M. (2008). Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO Journal, 27(16), 2214–2221, doi: 10.1038/emboj.2008.147.
- Raffaele, S., and Rivas, S. (2013). Regulate and be regulated: Integration of defense and other signals by the AtMYB30 transcription factor. Front Plant Science, 4, 98, doi: 10.3389/fpls.2013.00098.
- Roux, M., Schwessinger, B., Albrecht, C., Chinchilla, D., Jones, A., Holton, N., Malinovsky, F. G., Tör, M., De Vries, S., and Zipfel, C. (2011). The arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell, 23(6), 2440–2455, doi: 10.1105/tpc.111.084301.
- Rusnac, M. E., Prodan, D., Cuc, S., Petean, I., Prejmerean, C., Gasparik, C., Dudea, D., and Moldovan, M. (2021). Water sorption and solubility of flowable giomers. Materials (Basel), 14(9), 2399, doi: 10.3390/MA14092399.
- Tu, Z. H., Yamada, S., Hu, D., Ito, Y., Iwasaki, T., and Yamaguchi, A. (2019). Microbial diversity in the edible gall on white bamboo formed by the interaction between Ustilago esculenta and Zizania latifolia. Current Microbiology, 76(7), 824–834, doi: 10.1007/s00284-019-01693-w.
- Verma, V., Ravindran, P., and Kumar, P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 16(1), 86, doi: 10.1186/s12870-016-077-y.
- Wang, L. M., Lin, D., and Zhai, X. Q. (2019). Research progress of MAPK signal transduction pathway in plants. Journal of Henan Forestry Science and Technology, 39(3), 17–20, doi: 1003-2630(2019)03-0017-04.
- Wang, Y. L., Chen, J., Wang, D. M., Ye, F. Y., He, Y. L., Hu, Z. C., and Zhao, G. H. (2020a). A systematic review on the composition, storage, processing of bamboo shoots: Focusing the nutritional and functional benefits. Journal of Functional Foods, 71, 104015, doi: 10.1016/j.jff.2020.104015.
- Wang, Z. H., Yan, N., Luo, X., Guo, S. S., Xue, S. Q., Liu, J. Q., Zhang, J. Z., and Guo, D. P. (2020b). Gene expression in the smut fungus Ustilago esculenta governs swollen gall metamorphosis in Zizania latifolia. Microbial Pathogenesis, 143, 104107, doi: 10.1016/j.micpath.2020.104107.
- Wang, Z. D., Yan, N., Wang, Z. H., Zhang, X. H., Zhang, J. Z., Xue, H. M., Wang, L. X., Zhan, Q., Xu, Y. P., and Guo, D. P. (2017). RNA-seq analysis provides insight into reprogramming of culm development in Zizania latifolia induced by Ustilago esculenta. Plant Molecular Biology, 95(6), 533–547, doi: 10.1007/s11103-017-0658-9.
- Xu, W. J., Zhou, N. N., Guo, P. F., Zhou, H. M., Xu, S. S., He, X. M., and Gan, D. F. (2023). Physiological and chitinase gene expression responses of male Zizania latifolia to Ustilago esculenta infection. Journal of the American Society Horticulture Science, 148(2), 74–82, doi: 10.21273/JASHS05277-22.
- Yang, F. (2018). Establishment of regeneration system of Zizania latifolia in vitro and study on inoculation of Ustilago esculenta. Hefei, China: Anhui Agricultural University.
- Ye, Z. H., Pan, Y., Zhang, Y. F., Cui, H. F., Jin, G. L., Mchardy, A. C., Fan, L. J., and Yu, X. P. (2017). Comparative whole-genome analysis reveals artificial selection effects on Ustilago esculenta genome. DNA Research, 24(6), 635–648, doi: 10.1093/dnares/dsx031.
- Young, M. D., Wakefield, M. J., Smyth, G. K., and Oshlack, A. (2010). Gene onrology analysis for RNA-seq: Accounting for selection bias. Genome Biology, 11, R14, doi: 10.1186/gb-2010-11-2-r14.
- Yu, X. T., Chu, M. J., Chu, C., Du, Y. M., Shi, J., Liu, X. M., Liu, Y. H, Zhang, H. B., Zhang, Z. F., and Yan, N. (2020). Wild rice (Zizania spp.): A review of its nutritional constituents, phytochemicals, antioxidant activities, and health-promoting effects. Food Chemistry, 331, 127293, doi: 10.1016/j. foodchem.2020.127293.
- Zhang, Z. P., Song, S. X., Liu, Y. C., Zhu, X. R., Jiang, Y. F., Shi, L. T., Jiang, J. Z., and Miao M. M. (2021). Mixed transcriptome analysis revealed the possible interaction mechanisms between Zizania latifolia and Ustilago esculenta inducing Jiaobai stem-gall formation. International Journal of Molecular Sciences, 22(22), 12258, doi: 10.3390/ijms222212258.
- Zhang, W., Zhao, F., Jiang, L. H., Chen, C., Wu, L. T., and Liu, Z. B. (2018). Different pathogen defense strategies in Arabidopsis: More than pathogen recognition. Cells, 7(12), 252, doi: 10.3390/cells7120252.
- Zheng, Z. Y., Qamar, S. A., Chen, Z. X., and Mengiste, T. (2006). Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. The Plant Journal, 48(4), 592–605, doi: 10.1111/j.1365-313X.2006.02901.x.
- Zhou, N. N. (2021). Effects of adversity stress on the expression of ZlChi genes and physiological activity in Zizania latifolia. Hefei, China: Anhui Agricultural University, doi: 10.26919/d.cnki.gannu.2021.000033.
- Zhou, N. N., An, Y. L., Gui, Z. C., Xu, S. S., He, X. M., Gao, J., Zeng, D. L., Gan, D. F., and Xu, W. J. (2020). Identification and expression analysis of chitinase genes in Zizania latifolia in response to abiotic stress. Scientia Horticulturae, 261(4), 108952, doi: 10.1016/j.scienta.2019.108952.