Have a personal or library account? Click to login
Physicochemical quality, antioxidant capacity and nutritional value of edible flowers of some wild dahlia species Cover

Physicochemical quality, antioxidant capacity and nutritional value of edible flowers of some wild dahlia species

Open Access
|Dec 2019

References

  1. Ahmad, S.S., Tahir I., 2016. Increased oxidative stress, lipid peroxidation and protein degradation trigger senescence in Iris versicolor L. flowers. Physiol. Mol. Biol. Plants. 22(4), 507-514.10.1007/s12298-016-0392-9512004927924123
  2. Arellano K., Herrera J., Quispe M., Espinoza C., Veliz N., Orihuela W., 2015. Evaluation of phenolic compounds and antioxidant capacity of three color petal cress (Tropaeolum majus L.). Rev. Soc. Quím. Perú. 81(4), 319-328.10.37761/rsqp.v81i4.37
  3. Anónimo. 1990. Official methods of analyses. Washington, D.C. Association of Official Analytical Chemists.
  4. Azuma, M., Onozaki T., Ichimura K., 2019. Effects of bacterial proliferation and soluble carbohydrate levels on the vase life of cut dahlia (Dahlia variabilis) Flowers. Hort. J. 88(1), 106-115.10.2503/hortj.OKD-176
  5. Babarabie M., Zarei H., Varasteh F., 2016. Physiological response of Gerbera jamesonii L. cut flowers to the cola and peppermint essence. Iran. J. Plant Physiol. 6(3), 1729-1736.
  6. Benvenuti S., Bortolotti E., Maggini R., 2016. Antioxidant power, anthocyanin content and organoleptic performance of edible flowers. Sci. Hortic. 199, 170-177.10.1016/j.scienta.2015.12.052
  7. Chen N.H., Wei S., 2017. Factors influencing consumers’ attitudes towards the consumption of edible flowers. Food Qual. Prefer. 56(Part A), 93-100.10.1016/j.foodqual.2016.10.001
  8. Fernandes L., Ramalhosa E., Pereira J.A., Saraiva J.A., Casal S., 2018. The unexplored potential of edible flowers lipids. Agriculture 8(10), 1-23.10.3390/agriculture8100146
  9. Garzón G.A., Manns D.C., Riedl K., Schwartz S.J., Padilla-Zakour O., 2015. Identification of phenolic compounds in petals of nasturtium flowers (Tropaeolum majus) by high performance liquid chromatography coupled to mass spectrometry and determination of oxygen radical absorbance capacity (ORAC). J. Agric. Food Chem. 63(6), 111-118.10.1021/jf503366c25659835
  10. Gebremedhin H., Tesfaye B., Mohammed A., Tsegay D., 2013. Influence of preservative solutions on vase life and postharvest characteristics of rose (Rosa hybrid) cut flowers. Int. J. Biotechnol. Mol. Biol. Res. 4(8), 111-118.10.5897/IJBMBR2013.0171
  11. Giusti M.M., Wrolstad R.E., 2001. Characterization and measurement of anthocyanins by UV-visible spectroscopy. In: Current Protocols in Food Analytical Chemistry. Wrolstad R.E., Acree T.E., An H., Decker E.A., Penner M.H., Reid D.S., Schwartz S.J., Shoemaker C.F. and Sporns P. (Eds), John Wiley & Sons, New York, F1.2.1-F1.2.13.10.1002/0471142913
  12. Huang M., Xu Q., Deng X.X., 2014. L-Ascorbic acid metabolism during fruit development in an ascorbate-rich fruit crop chestnut rose (Rosa roxburghii Tratt). J. Plant Physiol. 171(14), 1205-16.10.1016/j.jplph.2014.03.01025019249
  13. Jagota S., Dani H., 1982. A new colorimetric technique for the estimation of vitamin C using Folin Phenol Reagent. Anal. Biochem. 127(1), 178-182.10.1016/0003-2697(82)90162-2
  14. Juárez-Rosete C.R., Aguilar-Castillo J.A., Aburto-González C.A., Alejo-Santiago G., 2019. Biomass production, nutritional requirement of nitrogen, phosphorus and potassium, and concentration of the nutrient solution in oregano. Rev. Chapingo Ser. Hortic. 25(1), 17-28.10.5154/r.rchsh.2018.02.006
  15. Kaisoon O., Siriamornpun S., Weerapreeyakul N., Meeso N., 2011. Phenolic compounds and antioxidant activities of edible flowers from Thailand. J. Funct. Foods. 3(2), 88-99.10.1016/j.jff.2011.03.002
  16. Lara-Cortés E., Martín-Belloso O., Osorio-Díaz P., Barrera-Necha L.L., Sánchez-López J.A., Bautista-Baños S., 2014. Antioxidant capacity, nutritional and functional composition of edible Dahlia flowers. Rev. Chapingo Ser. Hortic. 20(1), 101-116.10.5154/r.rchsh.2013.07.024
  17. Lara-Cortés E., Osorio-Díaz P., Jiménez-Aparicio A., Bautista-Baños S., 2013. Nutritional content, functional properties and conservation of edible flowers. Review. Arch. Latinoam. Nutr. 63(3), 197-208.
  18. Lara-Cortés E., Troncoso-Rojas R., Hernández-López M., Bautista-Baños S., 2016. Evaluation of the antimicrobial activity of cinnamaldehyde in the preservation of edible dahlia flowers, under different storage conditions. Rev. Chapingo Ser. Hortic. 22(3), 177-189.10.5154/r.rchsh.2016.02.002
  19. Lee J.H., Lee H.J., Choung M.G., 2009. Anthocyanin compositions and biological activities from the red petals of Korean edible rose (Rosa hybrida cv. Noblered). Food Chem. 129(2), 272-278.10.1016/j.foodchem.2011.04.04030634226
  20. Li X., Lu M., Tang D., Shi Y., 2015. Composition of carotenoids and flavonoids in narcissus cultivars and their relationship with flower color. PLoS ONE, 10(1), e0142074.10.1371/journal.pone.0142074463303726536625
  21. Liu L., Zhang L.Y., Wang S.L., Niu X.Y., 2016. Analysis of anthocyanins and flavonols in petals of 10 Rhododendron species from the Sygera Mountains in Southeast Tibet. Plant Physiol. Biochem. 104, 250-256.10.1016/j.plaphy.2016.03.03627058775
  22. Loizzo M.R., Pugliese A., Bonesi M., Tenuta M.C., Menichini F., Xiao J., ETAL., 2016. Edible flowers: a rich source of phytochemicals with antioxidant and hypoglycemic properties. J. Agric. Food Chem. 64(12), 2467-2474.10.1021/acs.jafc.5b0309226270801
  23. López-Cervantes J., Sánchez-Machado D.I., Cruz-Flores P., Mariscal-Domínguez M.F., Servín De La Mora-López G., ETAL., 2018. Antioxidant capacity, proximate composition, and lipid constituents of Aloe vera flowers. J. Appl. Res. Med. Aromat. Plants. 10, 93-98.10.1016/j.jarmap.2018.02.004
  24. Mlcek J., Rop O., 2011. Fresh edible flowers of ornamental plants – A new source of nutraceutical foods. Trends Food Sci. Technol. 22(10), 561-569.10.1016/j.tifs.2011.04.006
  25. Navarro-González I., González-Barrio R., Garcia-Valverde V., Bautista-Ortín A.B., Periago M.J., 2015. Nutritional composition and antioxidant capacity in edible flowers: Characterisation of phenolic compounds by HPLC-DAD-ESI/MSn. Int. J. Mol. Sci. 16(1), 805-822.10.3390/ijms16010805430727625561232
  26. Ohno S., Deguchi A., Hosokawa M., Tatsuzawa F., Doi M., 2013. A basic helix-loop-helix transcription factor DvIVS determines flower color intensity in cyanic dahlia cultivars. Planta 238(2), 331-343.10.1007/s00425-013-1897-x23689377
  27. Ozgen M., Reese R.N., Tulio A.Z., Miller A.R., Scheerens J.C., 2006. Modified 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,20-diphenyl-1-picrylhydrazyl (DPPH) methods. J. Agric. Food Chem. 54(4), 1151-1157.10.1021/jf051960d16478230
  28. Pires T.G.S.P., Dias M.I., Barros L., Galhelha R.G., Alves M.J., Oliveira M.B.P.P., ETAL., 2018. Edible flowers as sources of phenolic compounds with bioactive potential. Food Res. Int. 105, 580-588.10.1016/j.foodres.2017.11.01429433250
  29. Rachkeeree A., Kantadoung K., Suksathan R., Puangpradab R., Page P.A., Sommano S.R., 2018. Nutritional compositions and phytochemical properties of the edible flowers from selected zingiberaceae found in Thailand. Front. Nutr. 5(3), 1-10.10.3389/fnut.2018.00003579924329450200
  30. Ren P.J., Jin X., Liao W.B., Wang M., Niu L.J., Li X.P., ET AL. 2017. Effect of hydrogen-rich water on vase life and quality of cut lily and rose flowers. Hortic. Environ. Biotechnol. 58(6), 576-584.10.1007/s13580-017-0043-2
  31. Rop O., Mlcek J., JurikovA T., Neugebauerova J., Vabkova J., 2012. Edible flowers – A new promising source of mineral elements in human nutrition. Molecules 17(6), 6672-6683.10.3390/molecules17066672626829222728361
  32. SotelO, A., López-Garcia S., Basurto-Peña F., 2007. Content of nutrient and antinutrient in edible flowers of wild plants in Mexico. Plant Foods Hum. Nutr. 62(3), 133-138.10.1007/s11130-007-0053-917768684
  33. Waterman P.G., Mole S., 1994. Methods in Ecology. Analysis of Phenolic Plant Metabolites. Blackwell Scientific Publications, Oxford, USA.
  34. Yang E., Kang H., Kim C., Pak C.H., 2014. Dependence of the color appearance of some flowers on illumination. Color Res. Appl. 39(1), 28-36.10.1002/col.21766
  35. Younis A., Anjum S., Riaz A., Hameed M., Tariq U., Ahsan M., 2014. Production of quality dahlia (Dahlia variabilis cv. Redskin) flowers by efficient nutrients management running title: plant nutrition impacts on dahlia quality. Am. Eurasian J. Agric. Environ. Sci. 14(2), 137-142.
  36. Zeng Y., Deng M., Zhencheng LV., Peng Y., 2014. Evaluation of antioxidant activities of extracts from 19 Chinese edible flowers. SpringerPlus 3(1), 315.10.1186/2193-1801-3-315408225225013750
  37. Zhang C., Fu J.X., Wang Y.J., Gao S.L., Du D.N., Wu F., etal., 2015. Glucose supply improves petal coloration and anthocyanin biosynthesis in Paeonia suffruticosa Luoyang Hong’ cut flowers. Postharvest Biol. Technol. 101, 73-81.10.1016/j.postharvbio.2014.11.009
  38. Zhao D.Q., Tao J., Han C.X., Ge J.T., 2012. Flower color diversity revealed by differential expression of flavonoid biosynthetic genes and flavonoid accumulation in herbaceous peony (Paeonia lactiflora Pall.). Mol. Biol. Rep. 39(12), 11263-11275.10.1007/s11033-012-2036-723054003
DOI: https://doi.org/10.2478/fhort-2019-0026 | Journal eISSN: 2083-5965 | Journal ISSN: 0867-1761
Language: English
Page range: 331 - 342
Submitted on: May 1, 2019
|
Accepted on: Sep 17, 2019
|
Published on: Dec 26, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Esteban Arturo Rivera Espejel, Oscar Cruz Alvarez, José Merced Mejía Muñoz, María del Rosario García Mateos, María Teresa Beryl Colinas León, María Teresa Martínez Damián, published by Polish Society for Horticultural Sciences (PSHS)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.