Have a personal or library account? Click to login
Responses of Ginkgo biloba to water stress Cover

Responses of Ginkgo biloba to water stress

Open Access
|Dec 2025

References

  1. Anjum, S.A., Xie, X.Y., Wang, L.Ch., Saleem, M.F., Man, Ch., Lei, W. 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6 (9), 2026–2032. DOI: 10.5897/AJAR10.027.
  2. Ashraf, M., Harris, P.J.C. 2013. Photosynthesis under stressful environments. Photosynthetica, 51 (2), 163–190. DOI: 10.1007/s11099-013-0021-6.
  3. Ashraf, M. 2003. Relationship between leaf gas exchange characteristics and growth of differently adapted populations of blue panicgrass (Panicum antidotale Retz.) under salinity or waterlogging. Plant Science, 165 (1), 69–75. DOI: 10.1016/S0168-9452(03)00128-6.
  4. Bassuk, N.L., Curtis, D.F., Marracana, B.Z., Neal, B. 2003. Recommended urban trees: site assessment and tree selection for stress tolerance. Urban Horticulture Institute, Cornell University, Ithaca, New York.
  5. Borowski, J., Latocha, P. 2006. Trees and shrubs suitable for street conditions in Warsaw and other cities in central Poland. Rocznik Dendrologiczny, 54, 93.
  6. Brestič, M., Olšovská, K. 2001. Water stress of plants: causes, implications, perspectives (in Slovak). Slovak University of Agriculture, Nitra, Slovakia, 100–105.
  7. Chang, B. et al. 2020. Physiological, transcriptomic, and metabolic responses of Ginkgo biloba L. to drought, salt, and heat stresses. Biomolecules, 10, 1635. DOI: 10.3390/biom10121635.
  8. Chaves, M.M., Maroco, J.P., Pereira, J.S. 2003. Understanding plant responses to drought – from genes to the whole plant. Functional Plant Biology, 30, 239–264. DOI: 10.1071/FP02076.
  9. Chen, P., He, F.R., Wei, J. 1996. Studies on the theoretical basis for earlier and abundant bearing of Ginkgo biloba and the relative techniques of cultivation. Journal Fruit Sciences, 13 (4), 255–256.
  10. Chinn, E., Silverthorne, J. 1993. Light-dependent chloroplast development and expression of a light-harvesting chlorophyll a/b-binding protein gene in the gymnosperm Ginkgo biloba. Plant Physiology, 103 (3), 727–732. DOI: 10.1104/pp.103.3.727.
  11. Christianson, M.L., Niklas, K.J. 2011. Patterns of diversity in leaves from canopies of Ginkgo biloba are revealed using specific leaf area as a morphological character. American Journal of Botany, 98 (7), 1068–1076. DOI: 10.3732/ajb.1000452.
  12. Collalti, A. et al. 2020. Plant respiration: controlled by photosynthesis or biomass? Global Change Biology, 26 (3), 1739–1753. DOI: 10.1111/gcb.14857.
  13. Del Tredici, P. 1991. Ginkgos and people – a thousand years of interaction. Arnoldia, 51 (2), 2–15.
  14. Del Tredici, P. 2007. The phenology of sexual reproduction in Ginkgo biloba: Ecological and evolutionary implications. The Botanical Review, 73 (4), 267–278. DOI: 10.1663/0006-8101(2007)73[267:TP OSRI]2.0.CO;2.
  15. Ditmarová, L’., Kmet’, J., Ježík, M., Vál’ka, J. 2007. Mineral nutrition in relation to the Norway spruce forest decline in the region Horný Spiš (Northern Slovakia). Journal of Forest Science, 53 (3), 93–100.
  16. Dmuchowski, W. et al. 2019. Strategy of Ginkgo biloba L. in the mitigation of salt stress in the urban environment. Urban Forestry and Urban Greening, 38, 223–231. DOI: 10.1016/j.ufug.2019.01.003.
  17. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S.M.A. 2009. Plant drought stress: effects, mechanisms and management. Sustainable Agriculture, 29, 185–212. DOI: 10.1007/978-90-481-2666-8_12.
  18. Feng, L. et al. 2021. Predicting suitable habitats of Ginkgo biloba L. fruit forests in China. Climate Risk Management, 34. DOI: 10.1016/j.crm.2021.100364.
  19. González, L., González-Vilar, M. 2001. Determination of relative water content. In: Handbook of Plant Ecophysiology Techniques (ed. M.J. Reigosa Roger). Springer, Dordrecht, Netherland, 207–212. DOI: 10.1007/0-306-48057-3_14.
  20. Guo, Y., Guo, J., Shen, X., Wang, G., Wang, T. 2019. Predicting the bioclimatic habitat suitability of Ginkgo biloba L. in China with field-test validations. Forests, 10 (8), 705. DOI: 10.3390/f10080705.
  21. Handa, M. 2000. Ginkgo biloba in Japan. Arnoldia, 60, 26–34.
  22. Hartmann, H., Trumbore, S. 2016. Understanding the roles of non-structural carbohydrates in forest trees – from what we can measure to what we want to know. New Phytologist, 211 (2), 386–403. DOI: 10.1111/nph.13955.
  23. He, M., Shi, D.W., Wei, X.D., Hu, Y., Wang, T., Xie, Y.F. 2016. Gender-related differences in adaptability to drought stress in the dioecious tree Ginkgo biloba. Acta Physiologiae Plantarum, 38, 124. DOI: 10.1007/s11738-016-2148-0.
  24. Jing, M., Cao, F., Wang, G. 2005. The effects of soil water contents on photosynthetic characteristic of ginkgo. Jornal of Nanjing Forestry University (Natural Sciences Edition), 29 (4), 83–86.
  25. Kuhns, M.R., Garett, H.E., Teskey, R.O., Hinckley, T.M. 1985. Root growth of black walnut trees related to soil temperature, soil water potential, and leaf water potential. Forest Science, 31 (3), 617–629. DOI: 10.1093/forestscience/31.3.617.
  26. Larcher, W. 2003. Physiological plant ecology. Springer, Berlin, Germany, 142–153.
  27. Lei, Y., Yin, Ch., Li, Ch. 2006. Differences in some morphological, physiological and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiologia Plantarum, 127 (2), 182–191. DOI: 10.1111/j.1399- 3054.2006.00638.x.
  28. Li, W. et al. 2018. Cytological, physiological, and transcriptomic analyses of golden leaf coloration in Ginkgo biloba L. Horticulture Research, 5, 12. DOI: 10.1038/s41438-018-0015-4.
  29. Li, Z., Liang, Y., Zhou, J., Sun, X. 2014. Impact of deicing salts pollution on urban road greenspace: A case study of Beijing. Frontiers of Environmental Science and Engineering, 8, 747–756. DOI: 10.1007/s11783-014-0644-2.
  30. Lin, Y. et al. 2019. Bioactive metabolites in of Ginkgo biloba leaves: variations by seasonal, meteorological and soil. Brazilian Journal of Biology, 80 (4). DOI: 10.1590/1519-6984.220519.
  31. Masarovičová, E., Repčák, M. 2002. Plant physiology (in Slovak). Comenius University, Bratislava, Slovakia, 170–176.
  32. Ming, M., Zhang, J., Zhang, J., Tang, J., Fu, F., Cao, F. 2024. Transcriptome profiling identifies plant hormone signaling pathway-related genes and transcription factors in the drought and re-watering response of Ginkgo biloba. Plants, 13, 2685. DOI: 10.3390/plants13192685.
  33. Pace, P.F, Cralle, T.H., El-Halewany; S.H.M., Cothern, J.T., Senseman, S.A. 1999. Drought induced changes in shoot and root growth of young cotton plants. Journal of Cotton Science, 3, 183 – 187.
  34. Pagola, M. et al. 2009. New method to assess barley nitrogen nutrition status based on image colour analysis comparison with SPAD-502. Computers and Electronics in Agriculture, 65, 213–218.
  35. Pandey, S., Kumar, S., Nagar, P.K. 2003. Photosynthetic performance of Ginkgo biloba L. grown under high and low irradiance. Photosynthetica, 41 (4), 505–511. DOI: 10.1023/B:PHOT.0000027514.56808.35.
  36. Raček, M., Gaži, L. 2014. Influence of dormancy breaking treatment on Ginkgo biloba L. seeds germination. In: Proceedings of international scientific conference Horticulture in quality and culture of life, 23–26 September 2014, Brno, Czech Republic, 723–728.
  37. Raček, M., Lichtnerová, H., Dragúňová, M. 2011. Reactions of Ginkgo biloba L. seedlings on water scarcity. In Proceedings of international conference Structural and functional deviations from normal growth and development of plants under the influence of environmental factors, 20–24 June 2011, Petrozavodsk, Russia, 257–260.
  38. Raček, M., Lichtnerová, H., Dragúňová, M. 2010. The influence of water scarcity on choosen physiological reactions of Ginkgo biloba L. seedlings. Acta Horticulturae et Regiotecturae, 12 (2), 24–26.
  39. Raček, M., Lichtnerová, H., Okšová, L., Hillová, D., Kubuš, M., Ochmian, I. 2018. The stomatal response of Ginkgo biloba L. to water stress. In: Plants in urban areas and landscape. SUA, Nitra, Slovakia, 59–63.
  40. Saebø, A. et al. 2005. The selection of plant materials for street trees, park trees and urban woodland. In: Urban forests and trees (eds. C. Konijnendijk, K. Nilsson, T. Randrup, G. Schipperijn). Springer, Berlin, Heidelberg, Germany, 257–280.
  41. Schiestel-Aalto, P., Ryhti, K., Mäkelä, A., Peltoniemi, M., Bäck, J., Kulmala, L. 2019. Analysis of the NSC storage dynamics in tree organs reveals the allocation to belowground symbionts in the framework of whole tree carbon balance. Frontiers in Forests and Global Change, 2, 17. DOI: 10.3389/ffgc.2019.00017.
  42. Schmid, W., Balz, J.P. 2005. Cultivation of Ginkgo biloba L. on three continents. Acta Horticulturae, 676, 177–180.
  43. Šesták, J., Čatský, J. 1966. Methods of study of photosynthetic activity of plants (in Slovak). ČSAV, Praha, Czech Republic.
  44. Susiluoto, S., Berninger, F. 2007. Interactions between morphological and physiological drought responses in Eucalyptus microtheca. Silva Fennica, 41 (2), article id 292. DOI: 10.14214/sf.292.
  45. Swoczyna, T., Kalaji, H. M., Pietkiewicz, S., Borowski, J. 2015. Ability of various tree species to acclimation in urban environments probed wit JIP-test. Urban Forestry and Urban Greening, 14, 544–553. DOI: 10.1016/j.ufug.2015.05.005.
  46. URL 1. ImageJ [Online]. Available at: https://imagej. net/ij/(access on 30 October 2023).
  47. Uvackova, L., Ondruskova, E., Danchenko, M., Miernyk, J., Hrubik, P., Hajduch, M. 2014. Establishing a leaf proteome reference map for Ginkgo biloba provides insight into potential ethnobotanical uses. Journal of Agricultural and Food Chemistry, 62, 11547–11556. DOI: 10.1021/jf980295o.
  48. Wang, L. et al. 2020. Multifeature analyses of vascular cambial cells reveal longevity mechanisms in old Ginkgo biloba trees. Proceeding of the National Academy of Sciences, 117, 2201–2210. DOI: 10.1073/pnas.1916548117.
  49. Wang, L., Wang, D., Lin, M.M., Lu, Y., Jiang, X.X., Jin, B. 2011. An embryological study and systematic significance of the primitive gymnosperm Ginkgo biloba. Journal of Systematics and Evolution, 49, 353–361. DOI: 10.1111/j.1759-6831.2011.00123.x.
  50. Xu, N. et al. 2020. Gene expression profiles and flavonoid accumulation during salt stress in Ginkgo biloba seedlings. Plants, 9, 1162. DOI: 10.3390/plants9091162.
  51. Yang, X.S., Chen, G.X. 2014. Stimulation of photosynthetic characteristics of Ginkgo biloba L. during leaf growth. Bangladesh Jornal of Botany, 43 (1), 73–77.
  52. Yu, W., Cai, J., Liu, H., Lu, Z., Hu, J., Lu, Y. 2021. Transcriptomic analysis reveals regulatory networks for osmotic water stress and rewatering response in the leaves of Ginkgo biloba. Forests, 12, 1705. DOI: 10.3390/f12121705.
  53. Yu, W. et al. 2022. Partial root-zone simulated drought induces greater flavonoid accumulation than full root-zone simulated water deficiency in the leaves of Ginkgo biloba. Environmental and Experimental Botany, 201, 104998. DOI: 10.1016/j.envexp-bot.2022.104998.
DOI: https://doi.org/10.2478/ffp-2025-0018 | Journal eISSN: 2199-5907 | Journal ISSN: 0071-6677
Language: English
Page range: 231 - 239
Submitted on: Feb 1, 2025
Accepted on: Aug 1, 2025
Published on: Dec 12, 2025
Published by: Forest Research Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Marcel Raček, Helena Lichtnerová, Marcin Kubus, Ivan Iľko, published by Forest Research Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.