Have a personal or library account? Click to login
Age trends in the effectiveness of some ecosystem services provided by poplar cultivars in the Western Forest Steppe of Ukraine Cover

Age trends in the effectiveness of some ecosystem services provided by poplar cultivars in the Western Forest Steppe of Ukraine

Open Access
|Sep 2025

References

  1. An, Y. et al. 2021. Opportunities and barriers for biofuel and bioenergy production from poplar. GCBBioenergy, 13 (6), 905–913.
  2. Aylott, M.J. et al. 2008. Yield and spatial supply of bioenergy poplar and willow short-cutting cycle coppice in the UK. New Phytologist, 178 (2), 358–370. DOI: 10.1111/j.1469-8137.2008.02396.x.
  3. Aznar-Sánchez, J.A., Belmonte-Ureña, L.J., López-Serrano, M.J., Velasco-Muñoz, J.F. 2018. Forest ecosystem services: An analysis of worldwide research. Forests, 9 (8), 453.
  4. Başkent E.Z., Keleş S., Kadıoğulları A.İ., Bingöl Ö. 2011. Quantifying the effects of forest management strategies on the production of forest values: timber, carbon, oxygen, water, and soil. Environmental Modelling and Assessment, 16, 145–152.
  5. Biselli, C., Vietto, L., Rosso, L., Cattivelli, L., Nervo, G., Fricano, A. 2022. Advanced breeding for biotic stress resistance in poplar. Plants, 11 (15), 2032.
  6. Böhlenius, H., Öhman, M., Granberg, F., Persson, P.O. 2023. Biomass production and fuel characteristics from long rotation poplar plantations. Biomass and Bioenergy, 178, 106940.
  7. Bordus, O., Fuchylo, Y., Karpovych, M., Honchar, A. 2024. Growth of poplar energy plantations on leached chernozems of the forest-steppe (in Ukrainian). Proceedings of the Student Scientific and Practical Conference “Forest – an Object of Scientific Research” (Malyn Professional College), 18–23.
  8. Broeckx, L.S., Verlinden, M.S., Ceulemans, R. 2012. Establishment and two-year growth of a bio-energy plantation with fast-growing Populus trees in Flanders (Belgium): effects of genotype and former land use. Biomass and Bioenergy, 42. 151–163. DOI: 10.1016/j.biombioe.2012.03.005.
  9. Brown, S., Lugo, A.E. 1992. Aboveground biomass estimates for tropical moist forests of the Brazilian Amazon. Interciencia, 17 (1), 8–18.
  10. Chauhan, S.K., Sharma, R., Singh, B., Sharma, S.C. 2015. Biomass production, carbon sequestration and economics of on-farm poplar plantations in Punjab, India. Journal of Applied and Natural Science, 7 (1), 452–458.
  11. Chavan, S.B. et al. 2022. Estimating biomass production and carbon sequestration of poplar-based agro-forestry systems in India. Environment, Development and Sustainability, 1–29.
  12. Christersson, L. 2010. Wood production potential in poplar plantations in Sweden. Biomass and Bioenergy, 34 (9), 1289–1299.
  13. Dani, S., Sara, K. 2024. Scientific substantiation of the technology of poplar cultivation in south-east of Kazakhstan. In: Economically important trees: origin, evolution, genetic diversity and ecology (eds. T.K. Uthup, R. Karumamkandathil). Springer, Singapore, 207–258. DOI: 10.1007/978-981-97-5940-8_6.
  14. Debryniuk, Y.M., Fuchylo, Y.D. 2020. Plantation forest stands in Ukraine: Conceptual foundations, resource potential, and energy use (Monograph) (in Ukrainian). Halytska Vydavnycha Spilka.
  15. DesRochers, A., Van den Driessche, R., Thomas, B.R. 2006. NPK fertilization at planting of three hybrid poplar clones in the boreal region of Alberta. Forest Ecology and Management, 232 (1/3), 216–225.
  16. Dimitriou, I., Mola-Yudego, B. 2017. Poplar and willow plantations on agricultural land in Sweden: Area, yield, groundwater quality and soil organic carbon. Forest Ecology and Management, 383, 99–107.
  17. Dobbs, C., Escobedo, F.J., Zipperer, W.C. 2011. A framework for developing urban forest ecosystem services and goods indicators. Landscape and Urban Planning, 99 (3/4), 196–206.
  18. Fang, S., Xu, X., Lu, S., Tang, L. 1999. Growth dynamics and biomass production in short-rotation poplar plantations: 6-year results for three clones at four spacings. Biomass and Bioenergy, 17 (5), 415–425.
  19. Fang, S., Xue, J., Tang, L. 2007. Biomass production and carbon sequestration potential in poplar plantations with different management patterns. Journal of Environmental Management, 85 (3), 672–679.
  20. Fortier, J., Truax, B., Gagnon, D., Lambert, F. 2016. Potential for hybrid poplar riparian buffers to provide ecosystem services in three watersheds with contrasting agricultural land use. Forests, 7 (2), 37.
  21. Fuchylo, Y., Sbytna, M., Fuchylo, O., Litvin, V. 2009. Experience and prospects of growing poplar (Populus sp. L.) in the Southern Steppe of Ukraine (in Ukrainian). Scientific Works of the Forestry Academy of Sciences of Ukraine, (7), 66–69.
  22. Fuchylo, Y.D., Debryniuk, Y.M., Brovko, F.M., Hayda, Y.I., Sbytna, M.V., Fuchylo, D.Y. 2018. Industrial and energy-oriented plantation forestry: Conceptual foundations, technological features, and prospects (Monograph) (in Ukrainian). Komprint.
  23. Garten, C.T., Wullschleger, S.D., Classen, A.T. 2011. Review and model-based analysis of factors influencing soil carbon sequestration under hybrid poplar. Biomass and Bioenergy, 35 (1), 214–226. DOI: 10.1016/j.biombioe.2010.08.013.
  24. Gheorghe, I.F. 2024. Biomass as an energy source and carbon stock. Folia Forestalia Polonica, Series A – Forestry, 66 (4), 410–420.
  25. Grammatikopoulou, I., Vačkářová, D. 2021. The value of forest ecosystem services: A meta-analysis at the European scale and application to national ecosystem accounting. Ecosystem Services, 48.
  26. Guo, Z., Xiao, X., Gan, Y., Zheng, Y. 2001. Ecosystem functions, services and their values: A case study in Xingshan County of China. Ecological Economics, 38, 141–154.
  27. Hansen, E.A. 1991. Poplar woody biomass yields: a look to the future. Biomass and Bioenergy, 1 (1), 1–7.
  28. Hao, H., Dai, L., Wang, K., Xu, J., Liu, W. 2021. An updated framework for climate change impact assessment of bioenergy and an application in poplar biomass. Applied Energy, 299, 117323.
  29. Hayda, Y.I., Fuchylo, Y.D., Brych, Y.D., Shuvar, A.M., Haida, T.Y. 2024. Bioenergetic and carbon-sequestration productivity of poplar cultivars in the conditions of the Western Forest-Steppe (in Ukrainian). Agrosvit, 13. DOI: 10.32702/2306-6792.2024.13.21.
  30. IPCC. 1996. Land use change and forestry. In Revised. IPCC Guidelines for National Greenhouse Gas Inventories. Cambridge University Press, Cambridge, UK.
  31. IPCC. 2006. Guidelines for National Greenhouse Gas Inventories. The Institute for Global Environmental Strategies (IGES). Available at: https://www.ipccnggip.iges.or.jp/public/2006gl/ (access on 18 March 2025).
  32. Jenkins, M., Schaap, B. 2018. Forest ecosystem services. Background analytical study. Background study prepared for the thirteenth session of the United Nations Forum on Forests. April 2018.
  33. Klasnja, B., Orlovic, S., Galic, Z., Drekic, M. 2006. Poplar biomass of short rotation plantations as renewable energy raw material. In: Biomass and bioenergy: New research (ed. M.D. Brenes). Nova Science Publishers, New York, 35–66.
  34. Kutsokon, N., Khudolieieva, L., Los, S., Torosova, L., Vysotska, N. 2020. Evaluation of poplar and willow clones on the experimental short rotation plantation in Kharkiv region: Results of the second cultivation year. Plant Varieties Studying and Protection, 16 (2), 182–190. DOI: 10.21498/2518-1017.16.2.2020.209238.
  35. Kutsokon, N.K. et al. 2017. Growth characteristics and energy productivity of poplars and willows in a short-rotation plantation during the first year of vegetation. Biological Systems, 9 (2), 238–246.
  36. Kutsokon, N.K., Jose, S., Holzmueller, E. 2015. A global analysis of temperature effects on Populus plantation production potential. American Journal of Plant Sciences, 6 (1), 23–33.
  37. Kwaśna, H., Szewczyk, W., Baranowska, M., Gallas, E., Wiśniewska, M., Behnke-Borowczyk, J. 2021. Mycobiota associated with the vascular wilt of poplar. Plants, 10 (5), 892.
  38. Lodhiyal, L.S., Lodhiyal, N. 1997. Variation in biomass and net primary productivity in short rotation high density central Himalayan poplar plantations. Forest Ecology and Management, 98 (2), 167–179.
  39. Los, S.A., Zolotykh, I.V. 2014. Results of poplar variety testing in the State Enterprise “Balakliysk Forestry”. In: Forest typology: scientific, production, educational aspects of development. KhNAU, Kharkiv, 63–66.
  40. Marchi, M. et al. 2022. Universal reaction norms for the sustainable cultivation of hybrid poplar clones under climate change in Italy. iForest – Biogeosciences and Forestry, 15 (1), 47.
  41. Martiník, A., Adamec, Z., Knott, R., Stuchlý, O. 2015. Production and economic parameters of a poplar (J 105) coppice plantation with different length of the first rotation in the conditions of the Bohemian-Moravian Highlands. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 63 (5), 1499–1504.
  42. Meifang, Y., Lu, W., Honghui, R., Xinshi, Z. 2017. Biomass production and carbon sequestration of a short-rotation forest with different poplar clones in northwest China. Science of the Total Environment, 586, 1135–1140.
  43. Millennium Ecosystem Assessment. 2005. Ecosystems and Human Well-being: Synthesis. Island Press, Washington, DC.
  44. Nielsen, U., Madsen, P., Hansen, J., Nord-Larsen, T., Nielsen, A.T. 2014. Production potential of 36 poplar clones grown at medium length rotation in Denmark. Biomass and Bioenergy, 64, 99–109.
  45. Niemczyk, M., Hu, Y., Thomas, B.R. 2019. Selection of poplar genotypes for adapting to climate change. Forests, 10 (11), 1041.
  46. Ninan, K.N., Inoue, M. 2013. Valuing forest ecosystem services: Case study of a forest reserve in Japan. Ecosystem Services, 5, 78–87.
  47. Raihan, A. 2023. A review on the integrative approach for economic valuation of forest ecosystem services. Journal of Environmental Science and Economics, 2 (3), 1–18.
  48. Riemenschneider, D.E. et al. 2001. Poplar breeding and testing strategies in the north-central US: demonstration of potential yield and consideration of future research needs. The Forestry Chronicle, 77 (2), 245–253.
  49. Sperandio, G. et al. 2022. Deficit irrigation for efficiency and water saving in poplar plantations. Sustainability, 14 (21), 13991.
  50. Stanton, B.J. et al. 2021. The practice and economics of hybrid poplar biomass production for biofuels and bioproducts in the Pacific Northwest. Bioenergy Research, 14, 543–560.
  51. Stanturf, J.A., van Oosten, C., Netzer, D.A., Coleman, M.D., Portwood, C.J. 2002. Ecology and silviculture of poplar plantations. In: Poplar culture in North America (eds. D.I. Dickmann, J.G. Isebrands, J.E. Eckenwalder, J. Richardson). NRC Research Press, National Research Council of Canada, Ottawa, Canada, 153–206.
  52. Thakur, A.K. et al. 2021. Achievements and prospects of genetic engineering in poplar: A review. New Forests, 52, 889–920.
  53. Tiemann, A., Ring, I. 2022. Towards ecosystem service assessment: Developing biophysical indicators for forest ecosystem services. Ecological Indicators, 137.
  54. Torosova, L.O., Vysotska, N.Y., Los, S.A., Orlovska, T.V., Zolotykh, I.V. 2015. Studies of morphological characters for representatives of Populus genus (in Ukrainian). Forestry and Agroforestry, 126, 148–157.
  55. Truax, B., Gagnon, D., Fortier, J., Lambert, F. 2014. Biomass and volume yield in mature hybrid poplar plantations on temperate abandoned farmland. Forests, 5 (12), 3107–3130.
  56. Wang, D., Fan, J., Jing, P., Cheng, Y., Ruan, H. 2016. Analyzing the impact of climate and management factors on the productivity and soil carbon sequestration of poplar plantations. Environmental Research, 144, 88–95.
  57. Xi, B. et al. 2021. Irrigation management in poplar (Populus spp.) plantations: A review. Forest Ecology and Management, 494, 119330.
  58. Zalesny Jr, R.S., Donner, D.M., Coyle, D.R., Headlee, W.L. 2012. An approach for siting poplar energy production systems to increase productivity and associated ecosystem services. Forest Ecology and Management, 284, 45–58.
  59. Zhang, Y., Tian, Y., Ding, S., Lv, Y., Samjhana, W., Fang, S. 2020. Growth, carbon storage, and optimal rotation in poplar plantations: A case study on clone and planting spacing effects. Forests, 11 (8), 842.
DOI: https://doi.org/10.2478/ffp-2025-0012 | Journal eISSN: 2199-5907 | Journal ISSN: 0071-6677
Language: English
Page range: 137 - 149
Submitted on: Mar 20, 2025
Accepted on: Apr 28, 2025
Published on: Sep 14, 2025
Published by: Forest Research Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Yuriy Hayda, Yaroslav Fuchylo, Vasyl Brych, Antin Shuvar, Taras Haida, Olena Borysiak, published by Forest Research Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.