Figure 1.

Figure 2.

Figure 3.

Figure 4.

Dynamics of carbon and CO2-sequestration capacity of poplar cultivars
| Age | Traits | Cultivars | |||
|---|---|---|---|---|---|
| ‘Strilopodibna’ | ‘Druzhba’ | ‘Canadian-Balsamic’ | ‘Tronko’ | ||
| 7 years | stock of stemwood, m3·ha−1 | 93 | 122 | 113 | 105 |
| total biomass, t·ha−1 | 70.1 | 91.9 | 85.1 | 79.1 | |
| sequestered carbon, t·ha−1 | 35.0 | 46.0 | 42.6 | 39.6 | |
| CO2 sequestration, t·ha−1 | 128.5 | 168.5 | 156.1 | 145.0 | |
| annual CO2 sequestration, t·ha−1 | 18.4 | 24.1 | 22.3 | 20.7 | |
| 9 years | stock of stemwood, m3·ha−1 | 117 | 139 | 111 | 102 |
| total biomass, t·ha−1 | 88.2 | 104.7 | 83.6 | 76.9 | |
| sequestered carbon, t·ha−1 | 44.1 | 52.4 | 41.8 | 38.4 | |
| CO2 sequestration, t·ha−1 | 161.6 | 192.0 | 153.3 | 140.9 | |
| annual CO2 sequestration, t·ha−1 | 18.0 | 21.3 | 17.0 | 15.7 | |
| current change in CO2 sequestration, t·ha−1 | 16.6 | 11.7 | –1.4 | –2.1 | |
| 15 years | stock of stemwood, m3·ha−1 | 171 | 134 | 122 | 111 |
| total biomass, t·ha−1 | 128.8 | 101.0 | 91.9 | 83.6 | |
| sequestered carbon, t·ha−1 | 64.4 | 50.5 | 46.0 | 41.8 | |
| CO2 sequestration, t·ha−1 | 236.2 | 185.1 | 168.5 | 153.3 | |
| annual CO2 sequestration, t·ha−1 | 15.7 | 12.3 | 11.2 | 10.2 | |
| current change in CO2 sequestration, t·ha−1 | 12.4 | –1.2 | 2.5 | 2.1 | |
Dynamics of oxygen productivity of poplar cultivars
| Age | Traits | Cultivars | |||
|---|---|---|---|---|---|
| ‘Strilopodibna’ | ‘Druzhba’ | ‘Canadian-Balsamic’ | ‘Tronko’ | ||
| 7 years | total biomass, t·ha−1 | 70.1 | 91.9 | 85.1 | 79.1 |
| oxygen productivity, t·ha−1 | 84.1 | 110.3 | 102.1 | 94.9 | |
| annual oxygen productivity, t·ha−1 | 12.0 | 15.8 | 14.6 | 13.6 | |
| 9 years | total biomass, t·ha−1 | 88.2 | 104.7 | 83.6 | 76.9 |
| oxygen productivity, t·ha−1 | 105.8 | 125.6 | 100.3 | 92.3 | |
| annual oxygen productivity, t·ha−1 | 11.8 | 14.0 | 11.1 | 10.3 | |
| current change in oxygen productivity, t·ha−1 | 10.9 | 7.7 | –0.9 | –1.3 | |
| 15 years | total biomass, t·ha−1 | 128.8 | 101.0 | 91.9 | 83.6 |
| oxygen productivity, t·ha−1 | 154.6 | 121.2 | 110.3 | 100.3 | |
| annual oxygen productivity, t·ha−1 | 10.3 | 8.1 | 7.4 | 6.7 | |
| current change in oxygen productivity, t·ha−1 | 8.1 | –0.7 | 1.7 | 1.3 | |
Results of one-way ANOVA analysis of variance for the height and diameter of poplar cultivars
| Index | Effect | LS | SS | DF | MS | F | p |
|---|---|---|---|---|---|---|---|
| Height | intercept | *** | 13,917.88 | 1 | 13,917.88 | 3181.2 | <0.0001 |
| cultivar | n.s. | 17.79 | 3 | 5.93 | 1.355 | 0.2661 | |
| error | 240.63 | 55 | 4.38 | ||||
| Diameter at breast height (DBH) | intercept | *** | 34,059.12 | 1 | 34,059.12 | 5641.3 | <0.0001 |
| cultivar | *** | 498.99 | 3 | 166.33 | 27.6 | <0.0001 | |
| error | 1,913.86 | 317 | 6.04 |
Dynamics of growth and productivity of poplar cultivars
| Cultivars | Number of trees, pcs.·ha−1 | Survival, % | Height (Н), m | Diameter at breast height (DBH), cm | Wood stock, m3∙ha−1 | Annual stock change, m3∙ha−1∙year−1 |
|---|---|---|---|---|---|---|
| 7 years | ||||||
| ‘Strilopodibna’ | 5125 | 82 | 9.6±0.46 | 6.5±0.27 | 93 | 13.3 |
| ‘Druzhba’ | 5375 | 86 | 10.3±0.33 | 6.8±0.32 | 122 | 17.4 |
| ‘Canadian-Balsamic’ | 4875 | 78 | 9.8±0.36 | 7.4±0.33 | 113 | 16.1 |
| ‘Tronko’ | 5500 | 88 | 9.5±0.46 | 6.6±0.27 | 105 | 15.0 |
| 9 years | ||||||
| ‘Strilopodibna’ | 4875 | 78 | 11.3±0.27 | 7.7±0.30 | 117 | 13.0 |
| ‘Druzhba’ | 5000 | 80 | 11.8±0.21 | 8.1±0.31 | 139 | 15.4 |
| ‘Canadian-Balsamic’ | 3250 | 52 | 11.2±0.53 | 9.1±0.46 | 111 | 12.3 |
| ‘Tronko’ | 3750 | 60 | 11.3±0.34 | 8.2±0.33 | 102 | 11.3 |
| 15 years | ||||||
| ‘Strilopodibna’ | 3675 | 59 | 15.5±0.53 | 10.6±0.22 | 171 | 11.4 |
| ‘Druzhba’ | 2225 | 36 | 14.4±0.42 | 10.5±0.20 | 134 | 8.9 |
| ‘Canadian-Balsamic’ | 900 | 14 | 15.8±0.72 | 14.5±0.58 | 122 | 8.1 |
| ‘Tronko’ | 1300 | 21 | 15.7±0.49 | 11.9±0.26 | 111 | 7.4 |
Results of pairwise comparisons of the poplar cultivars average diameter at breast height (Fisher LSD test)
| Cultivar | ‘Canadian-Balsamic’ | ‘Tronko’ | ‘Druzhba’ | ‘Strilopodibna’ |
|---|---|---|---|---|
| ‘Canadian-Balsamic’ | <0.0001 | <0.0001 | <0.0001 | |
| ‘Tronko’ | <0.0001 | 0.0020 | 0.0015 | |
| ‘Druzhba’ | <0.0001 | 0.0020 | 0.8482 | |
| ‘Strilopodibna’ | <0.0001 | 0.0015 | 0.8482 |
Results of pair-wise comparisons of the poplar cultivars average height (Fisher LSD test)
| Cultivar | ‘Canadian-Balsamic’ | ‘Tronko’ | ‘Druzhba’ | ‘Strilopodibna’ |
|---|---|---|---|---|
| ‘Canadian-Balsamic’ | 0.8262 | 0.0758 | 0.6539 | |
| ‘Tronko’ | 0.8262 | 0.1115 | 0.8157 | |
| ‘Druzhba’ | 0.0758 | 0.1115 | 0.1722 | |
| ‘Strilopodibna’ | 0.6539 | 0.8157 | 0.1722 |
Dynamics of total, average, and current bioenergetic productivity of poplar cultivars
| Age | Traits | Poplar cultivars | |||
|---|---|---|---|---|---|
| ‘Strilopodibna’ | ‘Druzhba’ | ‘Canadian-Balsamic’ | ‘Tronko’ | ||
| 7 years | stock of stemwood, m3·ha−1 | 93 | 122 | 113 | 105 |
| aboveground biomass, t·ha−1 | 56.1 | 73.5 | 68.1 | 63.3 | |
| energy yield, GJ·ha−1 | 1038.8 | 1362.7 | 1262.2 | 1172.8 | |
| yield of standard fuel, t·ha−1 | 35.4 | 46.5 | 43.0 | 40.0 | |
| annual energy yield, GJ·ha−1 | 148.4 | 194.7 | 180.3 | 167.5 | |
| 9 years | stock of stemwood, m3·ha−1 | 117 | 139 | 111 | 102 |
| aboveground biomass, t·ha−1 | 70.5 | 83.8 | 66.9 | 61.5 | |
| energy yield, GJ·ha−1 | 1306.9 | 1552.6 | 1239.9 | 1139.3 | |
| yield of standard fuel, t·ha−1 | 44.6 | 52.9 | 42.3 | 38.8 | |
| annual energy yield, GJ·ha−1 | 145.2 | 172.5 | 137.8 | 126.6 | |
| current change in energy yield, GJ·ha−1 | 134.0 | 94.9 | −11.2 | −16.8 | |
| 15 years | stock of stemwood, m3·ha−1 | 171 | 134 | 122 | 111 |
| aboveground biomass, t·ha−1 | 103.1 | 80.8 | 73.5 | 66.9 | |
| energy yield, GJ·ha−1 | 1910.1 | 1496.8 | 1362.7 | 1239.9 | |
| yield of standard fuel, t·ha−1 | 65.1 | 51.0 | 46.5 | 42.3 | |
| annual energy yield, GJ·ha−1 | 127.3 | 99.8 | 90.8 | 82.7 | |
| current change in energy yield, GJ·ha−1 | 100.5 | −9.3 | 20.5 | 16.8 | |