Have a personal or library account? Click to login
Reforestation of Scots pine stands in the Luhansk region after Russia’s invasion of Ukraine: predictive modeling Cover

Reforestation of Scots pine stands in the Luhansk region after Russia’s invasion of Ukraine: predictive modeling

Open Access
|Jun 2025

References

  1. Battaglia, M., Sands, P.J. 1998. Process-based forest productivity models and their application in forest management. Forest Ecology and Management, 102, 13–32. DOI: 10.1016/s0378-1127(97)00112-6.
  2. Botkin, D.B. 1993. Forest dynamics: An ecological model. Oxford University Press, Oxford. DOI: 10.1017/s0266467400008166.
  3. Botkin, D.B., Janak J.F., Wallis J.R. 1972a. Rationale, limitations, and assumptions of a northeastern forest growth simulator. IBM Journal of Research and Development, 16, 101–116. DOI: 10.1147/rd.162.0101.
  4. Botkin, D.B., Janak, J.F., Wallis, J.R. 1972b. Some ecological consequences of a computer model of forest growth. Journal of Ecology, 60 (3), 849–872. DOI: 10.2307/2258570.
  5. Brzeziecki, B. 1991. Ecological growth model of the forest: some methodical and calibration problems (in Polish with English summary). Sylwan, 9, 5–15.
  6. Bugmann, H. 1997. Sensitivity of forests in the European Alps to future climatic changes. Climate Research, 8, 35–44. DOI: 10.3354/cr008035.
  7. Bugmann, H. 2001. A review of forest gap models. Climatic Change 51, 259–305. DOI: 10.1023/a:1012525626267.
  8. Buksha, I.F., Bondaruk, M.A., Tselishchev, O.G., Pyvovar, T.S., Buksha, M.I., Pasternak, V.P. 2017. Vitality forecasting for Scots pine and English oak in condition of climate change in the lowland of Ukraine (in Ukrainian with English summary). Forestry and Forest Melioration, 130, 146–158.
  9. Buksha, I.F., Pasternak, V.P., Pyvovar, T.S., Buksha, M.I., Yarotskyy, V.Yu. 2011a. Methodical materials on the forest monitoring level I and ensuring its quality (in Ukrainian with English summary). UFIFFM, Kharkiv.
  10. Buksha, I.F., Pyvovar, T.S., Buksha, M.I. 2011b. The dynamics of the defoliation of pine trees crowns in Lugansk, Sumy, and Kharkiv regions according to results of first level forest monitoring in 2001–2010 (in Ukrainian with English summary). Forestry and Forest Melioration, 118, 49–57.
  11. Dudley, J.P., Ginsberg, J.R., Plumptre, A.J., Hart, J.A., Campos, L.C. 2002. Effects of war and civil strife on wildlife and wildlife habitats. Conservation Biology, 16 (2), 319–329. DOI: 10.1046/j.1523-1739.2002.0030.
  12. Goldammer, J.G. 2013. Beyond Climate Change: Wild-land Fires and Human Security in Cultural Landscapes in Transition – Examples from Temperate-Boreal Eurasia. In: Vegetation Fires and Global Change – Challenges for Concerted International Action. A White Paper directed to the United Nations and International Organizations (ed. J.G. Goldammer). Kessel Publishing House, Remagen, Germany, 285–311.
  13. IPCC AR5. 2022. Climate Change 2022. Impacts, adaptation and vulnerability. Technical Summary, WG AR5, 36. Data Distribution Centre. Available at https://www.ipcc.ch/ (access on 29 July 2024).
  14. Irland, L.C., Iavorivska, L., Zibtsev, S., Myroniuk, V., Roth, B., Bilous, A. 2023. Russian invasion: rapid assessment of impact on Ukraine’s forests. Proceedings of the Forestry Academy of Sciences of Ukraine, 25, 146–155. DOI: 10.15421/412312.
  15. Kauppi, P.E. et al. 2022. Managing existing forests can mitigate climate change. Forest Ecology and Management, 513, 120186. DOI: 10.1016/j.foreco.2022.120186.
  16. Kozak, I. 2023. Crime of ecocide in Ukraine – environmental consequences of Russian military aggression. Studia Prawnicze KUL, 4 (96), 101–116. DOI: 10.31743/sp.16745.
  17. Kozak, I. et al. 2014a. Perspectives for the application of computer models to forest dynamic forecasting in Bieszczadzki National Park (Poland). Ekologia (Bratislava), 33 (1), 16–25. DOI: 10.2478/eko-2014-0003.
  18. Kozak, I. et al. 2014b. FORKOME model application for prognosis of forest fires. Ekologia (Bratislava), 33 (4), 391–400. DOI: 10.2478/eko-2014-0035.
  19. Kozak, I., Menshutkin, V., Jóźwina, M., Potaczała, G. 2003. Modelling of beech forest dynamics in the Bieszczady Mountains in response to climate change. Ekologia (Bratislava), 22 (2), 152–161. DOI: 10.2478/eko-2013-0009.
  20. Kozak, I., Mikusiński, G., Stępień, A., Kozak, H., Frąk R. 2012. Modeling forest dynamics in a nature reserve: a case study from south-central Sweden. Journal of Forest Science, 58 (10), 436–445. DOI: 10.17221/28/2012-JFS.
  21. Kozak, I., Parpan, T. 2019. Forecasting drying up of spruce forests in Transcarpathia (Ukraine) using the FORKOME model. Journal of Forest Science, 65 (6), 209–217. DOI: 10.17221/30/2019-JFS.
  22. Kozak, I., Popov, M., Semko, I., Mylenka, M., Kozak-Balaniuk, I. 2023. Improving methods to predict aboveground biomass of Pinus sylvestris in urban forest using UFB model, LiDAR, and digital hemispherical photography. Urban Forestry and Urban Greening, 79, 127793. DOI: 10.1016/j.ufug.2022.127793.
  23. Korzukhin, M.D., Ter-Mikaelian, M., Wagner, R.G. 1996. Process versus empirical models: Which approach for forest ecosystem management? Canadian Journal of Forest Research, 26, 879–887. DOI: 10.1139/x26-096.
  24. Machlis, G.E., Hanson, T. 2008. Warfare ecology. Bio-Science, 58, 729–736. DOI: 10.1641/b580809.
  25. Matsala, M. et al. 2024. War drives forest fire risks and highlights the need for more ecologically sound forest management in post-war Ukraine. Scientific Reports, 14, 4131. DOI: 10.1038/s41598-024-54811-5.
  26. Matsala, M., Odruzhenko, Sydorenko, S., Sydorenko, S. 2025. War threatens 18% of protective plantations in eastern agroforestry region of Ukraine. Forest Ecology and Management, 578, 122361.
  27. Mendez, F., Valánszki, I. 2021. Environmental armed conflict assessment using satellite imagery. Journal of Environmental Geography, 13, 1–14. DOI: 10.2478/jengeo-2020-0007.
  28. Meshkova, V. 2021. The lessons of Scots pine forest decline in Ukraine. Environmental Sciences Proceedings, 3 (1), 28. DOI: 10.3390/IECF2020-07990.
  29. Miehle, P., Battaglia, M., Sands P.J., Forrester, D.I., Feikeman P.M., Livesley, S.J. 2009. A comparison of four process-based models and a statistical regression model to predict growth of Eucalyptus globulus plantations. Ecological Modelling, 220, 734–746. DOI: 10.1016/j.ecolmodel.2008.12.010.
  30. Migration of climatic zones on the north. 2020. Available at: https://landlord.ua/wp-content/page/pidudarom-stykhii-iak-mihruiut-klimatychni-zonyv-ukraini/ (in Ukrainian with English summary) (access on 29 July 2024).
  31. Musa, S., Šakić, D., Šiljković, Ž. 2017. Geographical reflections of mine pollution in Bosnia and Herzegovina and Croatia. Journal for Geography, 12 (2), 53–70. DOI: 10.18690/rg.12.2.3994.
  32. Myroniuk, V. et al. 2023. Combining Landsat time series and GEDI data for improved characterization of fuel types and canopy metrics in wildfire simulation. Journal of Environmental Management, 345, 118736. DOI: 10.1016/j.jenvman.2023.118736.
  33. Myroniuk, V. et al. 2024. Nationwide remote sensing framework for forest resource assessment in war-affected Ukraine. Forest Ecology and Management, 569, 122156.
  34. Nakicenovic, N., Swart, R. 2000. Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, U.K.
  35. Ngugi, M.R., Botkin, D.B. 2011. Validation of a multispecies forest dynamics model using 50-year growth from Eucalyptus forests in eastern Australia. Ecological Modelling, 222, 3261–3270. DOI: 10.1016/j.ecolmodel.2011.06.016.
  36. Parpan, T., Kozak, I., Shparyk, Y., Mylenka, M., Balaniuk, I. 2019. Simulation of decline of Norway spruce (Picea abies L. Karst.) forests in Gorgan Mountains (Ukrainian Carpathians): case study using FORKOME model. Ekológia (Bratislava), 38 (4), 353–366. DOI: 10.2478/eko-2019-0026.
  37. Prihodko, O.B., Pasternak, V.P., Pyvovar, T.S., Yarotskyi, V.Yu., Lialin, O.I. 2022. Features of forest mensuration characteristics and health condition dynamics in Prydonetsky steppe of Ukraine: climate change context. Forestry and Forest Melioration, 141, 23–32. DOI: 10.33220/1026-3365.141.2022.23.
  38. Shugart, H.H., West., D.C. 1980. Forest succession models. Bioscience, 30, 308–313. DOI: 10.2307/1307854.
  39. Shumilo, L. et al. 2023. Conservation policies and management in the Ukrainian Emerald Network have maintained reforestation rate despite the war. Communications Earth and Environment, 4, 443. DOI: 10.1038/s43247-023-01099-4.
  40. Shvidenko, A., Buksha, I., Krakovska, S., Lakyda, P. 2017. Vulnerability of Ukrainian Forests to climate change. Sustainability, 9 (7), 1152. DOI: 10.3390/su9071152.
  41. Shvidenko, A.Z., Buksha I.F., Krakovska S.V. 2018. Vulnerability of Ukrainian forests to climate change: monograph. Nika-Tsentr, Kyiv.
  42. Taylor, S.L., MacLean, D.A. 2007. Spatiotemporal patterns of mortality in declining balsam fir and spruce stands. Forest Ecology and Management, 253, 188–201.
  43. Vacek, S. et al. 2016. Structure, regeneration and growth of Scots pine (Pinus sylvestris L.) stands with respect to changing climate and environmental pollution. Silva Fennica, 50 (4), 1564. DOI: 10.14214/sf.1564.
  44. Vanclay, J.K., Skovsgaard, J.P. 1997. Evaluating forest growth models. Ecological Modelling, 98 (1), 1–12. DOI: 10.1016/S0304-3800(96)01932-1.
  45. Vysotsky, G.N. 1927. Our southern arenas and the project of their culture. Radyansky villager, Kharkov.
  46. Yang, Y., Monserud, R.A., Huang, S. 2004. An evaluation of diagnostic test and their roles in validating forest biometric models. Canadian Journal of Forest Research, 34 (3), 619–629. DOI: 10.1139/X03-230.
  47. Zepner, L., Karrasch, P., Wiemann, F., Bernard, L. 2020. ClimateCharts.net – an interactive climate analysis web platform. International Journal of Digital Earth, 14 (3), 338–356. DOI: 10.1080/17538947.2020.1829112.
  48. Zibtsev, S.V. et al. 2021. The best practice for creating forest stands at the burnt land in 2020 in the Luhansk region (terms of creation, species, density, technology of creation, application of mycorrhiza) (in Ukrainian with English summary). Severodonetsk.
  49. Zibtsev, S.V. et al. 2022a. Restoration of the Luhansk region’s forests on burned areas in climate change conditions (in Ukrainian with English summary). NUBiP, Kyiv.
  50. Zibtsev, S.V. et al. 2022b. Recommendations for reforestation in the wildfires of the Luhansk region. Kyiv – Kharkiv – Severodonetsk.
  51. Zibtsev, S. et al. 2022c. Forest management on territories contaminated with unexploded ordnance. (in Ukrainian with English summary). WWF-Ukraine.
  52. Ziesche, T.M. 2017. Tree growth indicates resource quality for foliage-feeding insects: Pattern and structure of herbivore diversity in response to productivity. Ecological Indicators, 83, 249–259. DOI: 10.1016/j.ecolind.2017.07.053.
DOI: https://doi.org/10.2478/ffp-2025-0006 | Journal eISSN: 2199-5907 | Journal ISSN: 0071-6677
Language: English
Page range: 51 - 60
Submitted on: Mar 5, 2025
Accepted on: Apr 29, 2025
Published on: Jun 18, 2025
Published by: Forest Research Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Ihor Kozak, Viktor Myroniuk, Serhij Zibtsev, Myroslava Mylenka, Piotr Kociuba, Krzysztof Gniewek, published by Forest Research Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.