Have a personal or library account? Click to login
Characteristics of the process of tree mortality occurring in the Polish Sudetes Mts Cover

Characteristics of the process of tree mortality occurring in the Polish Sudetes Mts

Open Access
|Dec 2024

References

  1. Adam, H.D. et al. 2017. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology and Evolution, 1, 1285–1291. DOI: 10.1038/s41559-017-0248-x.
  2. Allen, C.D. et al. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660–684. DOI: 10.1016/j.foreco.2009.09.001.
  3. Anderegg, W.R.L., Kane, J.M., Anderegg, L.D.L. 2013. Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change, 3, 30–36. DOI: 10.1038/nclimate1635.
  4. Babst, F. et al. 2019. Twentieth century redistribution in climatic drivers of global tree growth. Science Advances, 5, 1–10. DOI: 10.1126/sciadv.aat4313.
  5. Bałazy, R. 2020. Forest dieback process in the Polish mountains in the past and nowadays – literature review on selected topics. Folia Forestalia Polonica, Series A-Forestry, 62, 184–198. DOI: 10.2478/ffp-2020-0018.
  6. Boisvenue, C., Running, S.W. 2006. Impacts of climate change on natural forest productivity – evidence since the middle of the 20th century. Global Change Biology, 12 (5), 862–882.
  7. Breda, N., Huc, R., Granier, A., Dreyer, E. 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science, 63, 625–644. DOI: 10.1051/forest:2006042.
  8. Bruchwald, A. 1986. Simulation growth model MDI-1 for Scots pine. Annals of Warsaw Agricultural University – SGGW AR. Forestry and Wood Technology, 34, 47–52.
  9. Bruchwald, A., Dmyterko, E. 2010. Lasy Beskidu Śląskiego i Żywieckiego – zagrożenia, nadzieja. Instytut Badawczy Leśnictwa, Sękocin Stary.
  10. Bruchwald, A., Dmyterko, E., Mionskowski, M., Wrzesiński, P. 2019. Dynamics of tree mortality in the Sudety Mts. in years 2002−2018. Sylwan, 163, 969–979. DOI: 10.26202/sylwan.2019116.
  11. Buras, A, Rammig, A.S., Zang, C. 2020. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences, 17, 1655–1672. DOI: 10.5194/bg-17-1655-2020.
  12. Capecki, Z. et al. 1991. Stan lasów w Sudetach – przyczyny, przebieg i konsekwencje zamierania lasów oraz zadania dla gospodarki leśnej. Instytut Badawczy Leśnictwa, Warszawa.
  13. Ciais, P. et al. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437, 529–533. DOI: 10.1038/nature03972.
  14. Ciesielski, M., Bałazy, R., Hycza, T., Bruchwald, A., Dmyterko, E. 2016. Szacowanie szkód spowodowanych przez wiatr w drzewostanach przy wykorzystaniu zobrazowań satelitarnych i danych Systemu Informatycznego Lasów Państwowych. Sylwan, 160 (5), 371–377.
  15. Dmyterko, E., Bruchwald, A. 2018. Decline of Norway spruce stands in the Beskid Śląski Mts. Sylwan, 162 (3), 189−199.
  16. Dmyterko, E., Bruchwald, A., Mionskowski, M., Brzeziecki, B. 2020. Species composition model for the forests of the Sudety Mountains with regard to climate change. Sylwan, 164 (6), 454–466. DOI: 10.26202/sylwan.2020067.
  17. Doroszewski, A. et al. 2012. Fundamentals of the Agricultural Drought Monitoring System. Water-Environment-Rural Areas, 12 (38), 77–91.
  18. Durło, G.B. 2019. Climatic water balance in the Góry Opawskie Landscape Park. Sylwan, 163 (10), 802–810. DOI: 10.26202/sylwan.2019050.
  19. Dyderski, M.K., Paź, S., Frelich, L.E., Jagodziński, A.M. 2018. How much does climate change threaten European forest tree species distributions? Global Change Biology, 24, 1150–1163. DOI: 10.1111/gcb.13925.
  20. Hanewinkel, M. et al. 2013. Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 3, 203–207. DOI: 10.1038/nclimate1687.
  21. Hentschel, R. et al. 2014. Norway spruce physiological and anatomical predisposition to dieback. Forest Ecology and Management, 322, 27–36. DOI: 10.1016/j.foreco.2014.03.007.
  22. Korzybski, D., Mionskowski, M., Dmyterko, E., Bruchwald, A. 2013. Degree of damage to spruce, fir and larch stands in the Western Sudetes. Sylwan, 157 (2), 104–112.
  23. Leifsson, C., Buras, A., Rammig, A., Zang, C. 2023. Changing climate sensitivity of secondary growth following extreme drought events in forest ecosystems: a global analysis. Environmental Research Letters, 18 (1). DOI: 10.1088/1748-9326/aca9e5.
  24. Marosz, M. et al. 2011. Zmienność klimatu Polski od połowy XX wieku. Rezultaty projektu KLIMAT. Poland’s climate variability 1951–2008. KLIMAT project’s results. Prace i Studia Geograficzne, 47, 51–66.
  25. McDowell, N. et al. 2008. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178, 719–739. DOI: 10.1111/j.1469-8137.2008.02436.x.
  26. McDowell, N.G. et al. 2020. Pervasive shifts in forest dynamics in a changing world. Science, 368. DOI: 10.1126/science.aaz9463.
  27. McDowell, N.G. et al. 2022. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nature Reviews Earth and Environment, 3, 294–308. DOI: 10.1038/s43017-022-00272-1.
  28. Miszuk, B. 2023. Climate water balance in the warm half-year and its circulation conditions in the Sudetes Mountains and their foreland (Poland and Czechia). Water, 15 (4), 795. DOI: 10.3390/w15040795.
  29. Modrzyński, J. 2007. Outline of ecology. In: Biology and ecology of Norway spruce (eds. M.G. Tjoelker, A. Boratyński, W. Bugała). Springer, Dordrecht, Netherlands, 195–253.
  30. Netherer, S. et al. 2021. Interactions among Norway spruce, the bark beetle Ips typographus and its fungal symbionts in times of drought. Journal of Pest Science, 94, 591–614. DOI: 10.1007/s10340-021-01341-y.
  31. Pawlik, Ł. 2012. Zniszczenia w lasach sudeckich pod wpływem orkanu Cyryl (18–19.01.2007 r.) – implikacje historyczne i regionalne. Przegląd Geograficzny, 84 (1), 53–75. DOI: 10.7163/PrzG.2012.1.3.
  32. Puchałka, R. et al. 2023. Predicted range shifts of alien tree species in Europe. Agricultural and Forest Meteorology, 341, 109650. DOI: 10.1016/j.agrformet.2023.109650.
  33. Roloff, A. 2010. Bäume. Lexikon der praktischen Baumbiologie. Wiley-VCH, Weinheim.
  34. Rosner, S. et al. 2016. Novel hydraulic vulnerability proxies for boreal conifer species reveal that opportunists may have lower survival prospects under extreme climatic events. Frontiers in Plant Science, 7, 831. DOI: 10.3389/fpls.2016.00831.
  35. Salmi, T. et al. 2002. Detecting trends of annual values of atmospheric pollutants by the Mann-Kendall test and Sen’s slope estimates – the Excel template application MAKESENS. Finnish Meteorological Institute, Helsinki, Finlandia.
  36. Schuldt, B. et al. 2020. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic and Applied Ecology, 45, 86–103. DOI: 10.1016/j.baae.2020.04.003.
  37. Seidl, R. et al. 2015. Small beetle, large-scale drivers: how regional and landscape factors affect outbreaks of the European spruce bark beetle. The Journal of Applied Ecology, 53, 530–540. DOI: 10.1111/1365-2664.12540.
  38. Somorowska, U. 2022. Amplified signals of soil moisture and evaporative stresses across Poland in the twenty-first century. Science of the Total Environment, 812, 151465. DOI: 10.1016/j.scitotenv.2021.151465.
  39. Song, Y. et al. 2022. Growth resilience of conifer species decreases with early, long-lasting and intense droughts but cannot be explained by hydraulic traits. Journal of Ecology, 110, 2088–2104. DOI: 10.1111/1365-2745.13931.
  40. Spiecker, H. et al. 2004. Norway Spruce conversion – options and consequences. EFI Research Report 18. Brill, Leiden, Boston, Köln.
  41. Spinoni, J. et al. 2018. Will drought events become more frequent and severe in Europe? International Journal of Climatology, 38, 1718–1736. DOI: 10.1002/joc.5291.
  42. Szabla, K. 2009. Aktualny stan drzewostanów świerkowych w Beskidach i ich geneza. In: Problem zamierania drzewostanów świerkowych w Beskidzie Śląskim i Żywieckim (ed. J. Starzyk). Oficyna Wydawniczo-Drukarska Secesja, Kraków, 13–43.
  43. Vitali, V., Büntgen, U., Bauhus, J. 2017. Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in southwestern Germany. Global Change Biology, 23, 5108–5119. DOI: 10.1111/gcb.13774.
  44. Wójcik, R., Miętus, M. 2014. Niektóre cechy wieloletniej zmienności temperatury powietrza w Polsce (1951–2010). Some features of long-term variability in air temperature in Poland (1951–2010). Przegląd Geograficzny, 86 (3), 339–364.
  45. Wrzesiński, P., Klisz, M., Niemczyk, M. 2024. Looking for a drought-tolerant tree species among native and introduced mountain conifers. Trees, 38, 423–440. DOI: 10.1007/s00468-024-02491-z.
  46. Zimmermann, M.H., Brown, C.L. 1981. Drzewa. Struktura i funkcje. PWN, Warszawa.
DOI: https://doi.org/10.2478/ffp-2024-0026 | Journal eISSN: 2199-5907 | Journal ISSN: 0071-6677
Language: English
Page range: 347 - 358
Submitted on: Sep 21, 2023
Accepted on: Mar 20, 2024
Published on: Dec 11, 2024
Published by: Forest Research Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Arkadiusz Bruchwald, Elżbieta Dmyterko, Longina Chojnacka Ożga, Małgorzata Sułkowska, Piotr Wrzesiński, published by Forest Research Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.