References
- Adam, H.D. et al. 2017. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology and Evolution, 1, 1285–1291. DOI: 10.1038/s41559-017-0248-x.
- Allen, C.D. et al. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660–684. DOI: 10.1016/j.foreco.2009.09.001.
- Anderegg, W.R.L., Kane, J.M., Anderegg, L.D.L. 2013. Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change, 3, 30–36. DOI: 10.1038/nclimate1635.
- Babst, F. et al. 2019. Twentieth century redistribution in climatic drivers of global tree growth. Science Advances, 5, 1–10. DOI: 10.1126/sciadv.aat4313.
- Bałazy, R. 2020. Forest dieback process in the Polish mountains in the past and nowadays – literature review on selected topics. Folia Forestalia Polonica, Series A-Forestry, 62, 184–198. DOI: 10.2478/ffp-2020-0018.
- Boisvenue, C., Running, S.W. 2006. Impacts of climate change on natural forest productivity – evidence since the middle of the 20th century. Global Change Biology, 12 (5), 862–882.
- Breda, N., Huc, R., Granier, A., Dreyer, E. 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science, 63, 625–644. DOI: 10.1051/forest:2006042.
- Bruchwald, A. 1986. Simulation growth model MDI-1 for Scots pine. Annals of Warsaw Agricultural University – SGGW AR. Forestry and Wood Technology, 34, 47–52.
- Bruchwald, A., Dmyterko, E. 2010. Lasy Beskidu Śląskiego i Żywieckiego – zagrożenia, nadzieja. Instytut Badawczy Leśnictwa, Sękocin Stary.
- Bruchwald, A., Dmyterko, E., Mionskowski, M., Wrzesiński, P. 2019. Dynamics of tree mortality in the Sudety Mts. in years 2002−2018. Sylwan, 163, 969–979. DOI: 10.26202/sylwan.2019116.
- Buras, A, Rammig, A.S., Zang, C. 2020. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences, 17, 1655–1672. DOI: 10.5194/bg-17-1655-2020.
- Capecki, Z. et al. 1991. Stan lasów w Sudetach – przyczyny, przebieg i konsekwencje zamierania lasów oraz zadania dla gospodarki leśnej. Instytut Badawczy Leśnictwa, Warszawa.
- Ciais, P. et al. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437, 529–533. DOI: 10.1038/nature03972.
- Ciesielski, M., Bałazy, R., Hycza, T., Bruchwald, A., Dmyterko, E. 2016. Szacowanie szkód spowodowanych przez wiatr w drzewostanach przy wykorzystaniu zobrazowań satelitarnych i danych Systemu Informatycznego Lasów Państwowych. Sylwan, 160 (5), 371–377.
- Dmyterko, E., Bruchwald, A. 2018. Decline of Norway spruce stands in the Beskid Śląski Mts. Sylwan, 162 (3), 189−199.
- Dmyterko, E., Bruchwald, A., Mionskowski, M., Brzeziecki, B. 2020. Species composition model for the forests of the Sudety Mountains with regard to climate change. Sylwan, 164 (6), 454–466. DOI: 10.26202/sylwan.2020067.
- Doroszewski, A. et al. 2012. Fundamentals of the Agricultural Drought Monitoring System. Water-Environment-Rural Areas, 12 (38), 77–91.
- Durło, G.B. 2019. Climatic water balance in the Góry Opawskie Landscape Park. Sylwan, 163 (10), 802–810. DOI: 10.26202/sylwan.2019050.
- Dyderski, M.K., Paź, S., Frelich, L.E., Jagodziński, A.M. 2018. How much does climate change threaten European forest tree species distributions? Global Change Biology, 24, 1150–1163. DOI: 10.1111/gcb.13925.
- Hanewinkel, M. et al. 2013. Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 3, 203–207. DOI: 10.1038/nclimate1687.
- Hentschel, R. et al. 2014. Norway spruce physiological and anatomical predisposition to dieback. Forest Ecology and Management, 322, 27–36. DOI: 10.1016/j.foreco.2014.03.007.
- Korzybski, D., Mionskowski, M., Dmyterko, E., Bruchwald, A. 2013. Degree of damage to spruce, fir and larch stands in the Western Sudetes. Sylwan, 157 (2), 104–112.
- Leifsson, C., Buras, A., Rammig, A., Zang, C. 2023. Changing climate sensitivity of secondary growth following extreme drought events in forest ecosystems: a global analysis. Environmental Research Letters, 18 (1). DOI: 10.1088/1748-9326/aca9e5.
- Marosz, M. et al. 2011. Zmienność klimatu Polski od połowy XX wieku. Rezultaty projektu KLIMAT. Poland’s climate variability 1951–2008. KLIMAT project’s results. Prace i Studia Geograficzne, 47, 51–66.
- McDowell, N. et al. 2008. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178, 719–739. DOI: 10.1111/j.1469-8137.2008.02436.x.
- McDowell, N.G. et al. 2020. Pervasive shifts in forest dynamics in a changing world. Science, 368. DOI: 10.1126/science.aaz9463.
- McDowell, N.G. et al. 2022. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nature Reviews Earth and Environment, 3, 294–308. DOI: 10.1038/s43017-022-00272-1.
- Miszuk, B. 2023. Climate water balance in the warm half-year and its circulation conditions in the Sudetes Mountains and their foreland (Poland and Czechia). Water, 15 (4), 795. DOI: 10.3390/w15040795.
- Modrzyński, J. 2007. Outline of ecology. In: Biology and ecology of Norway spruce (eds. M.G. Tjoelker, A. Boratyński, W. Bugała). Springer, Dordrecht, Netherlands, 195–253.
- Netherer, S. et al. 2021. Interactions among Norway spruce, the bark beetle Ips typographus and its fungal symbionts in times of drought. Journal of Pest Science, 94, 591–614. DOI: 10.1007/s10340-021-01341-y.
- Pawlik, Ł. 2012. Zniszczenia w lasach sudeckich pod wpływem orkanu Cyryl (18–19.01.2007 r.) – implikacje historyczne i regionalne. Przegląd Geograficzny, 84 (1), 53–75. DOI: 10.7163/PrzG.2012.1.3.
- Puchałka, R. et al. 2023. Predicted range shifts of alien tree species in Europe. Agricultural and Forest Meteorology, 341, 109650. DOI: 10.1016/j.agrformet.2023.109650.
- Roloff, A. 2010. Bäume. Lexikon der praktischen Baumbiologie. Wiley-VCH, Weinheim.
- Rosner, S. et al. 2016. Novel hydraulic vulnerability proxies for boreal conifer species reveal that opportunists may have lower survival prospects under extreme climatic events. Frontiers in Plant Science, 7, 831. DOI: 10.3389/fpls.2016.00831.
- Salmi, T. et al. 2002. Detecting trends of annual values of atmospheric pollutants by the Mann-Kendall test and Sen’s slope estimates – the Excel template application MAKESENS. Finnish Meteorological Institute, Helsinki, Finlandia.
- Schuldt, B. et al. 2020. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic and Applied Ecology, 45, 86–103. DOI: 10.1016/j.baae.2020.04.003.
- Seidl, R. et al. 2015. Small beetle, large-scale drivers: how regional and landscape factors affect outbreaks of the European spruce bark beetle. The Journal of Applied Ecology, 53, 530–540. DOI: 10.1111/1365-2664.12540.
- Somorowska, U. 2022. Amplified signals of soil moisture and evaporative stresses across Poland in the twenty-first century. Science of the Total Environment, 812, 151465. DOI: 10.1016/j.scitotenv.2021.151465.
- Song, Y. et al. 2022. Growth resilience of conifer species decreases with early, long-lasting and intense droughts but cannot be explained by hydraulic traits. Journal of Ecology, 110, 2088–2104. DOI: 10.1111/1365-2745.13931.
- Spiecker, H. et al. 2004. Norway Spruce conversion – options and consequences. EFI Research Report 18. Brill, Leiden, Boston, Köln.
- Spinoni, J. et al. 2018. Will drought events become more frequent and severe in Europe? International Journal of Climatology, 38, 1718–1736. DOI: 10.1002/joc.5291.
- Szabla, K. 2009. Aktualny stan drzewostanów świerkowych w Beskidach i ich geneza. In: Problem zamierania drzewostanów świerkowych w Beskidzie Śląskim i Żywieckim (ed. J. Starzyk). Oficyna Wydawniczo-Drukarska Secesja, Kraków, 13–43.
- Vitali, V., Büntgen, U., Bauhus, J. 2017. Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in southwestern Germany. Global Change Biology, 23, 5108–5119. DOI: 10.1111/gcb.13774.
- Wójcik, R., Miętus, M. 2014. Niektóre cechy wieloletniej zmienności temperatury powietrza w Polsce (1951–2010). Some features of long-term variability in air temperature in Poland (1951–2010). Przegląd Geograficzny, 86 (3), 339–364.
- Wrzesiński, P., Klisz, M., Niemczyk, M. 2024. Looking for a drought-tolerant tree species among native and introduced mountain conifers. Trees, 38, 423–440. DOI: 10.1007/s00468-024-02491-z.
- Zimmermann, M.H., Brown, C.L. 1981. Drzewa. Struktura i funkcje. PWN, Warszawa.