Have a personal or library account? Click to login
Long-term analysis of sap flow conditions in the trunk of Scots pine (Pinus sylvestris L.) in the old-growth phase in relation to air temperature Cover

Long-term analysis of sap flow conditions in the trunk of Scots pine (Pinus sylvestris L.) in the old-growth phase in relation to air temperature

Open Access
|Sep 2024

References

  1. Andreieva, O., Goychuk. A. 2020. Forest site conditions and the threat for insect outbreaks in the Scots pine stands of Polissya. Folia Forestalia Polonica, Ser. A – Forestry, 62 (4), 270–278.
  2. Banach, J., Skrzyszewska. K., Pańczyk, B. 2021. Variability of Pinus sylvestris L. seeds including seed coat colour. Forest Research Papers, 82 (1), 15–22.
  3. Čermák, J., Kucera, J., Nadezhdina, N. 2004. Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees, 18 (5), 529–546.
  4. Chmura, D.J., Barzdajn, W., Kowalkowski, W., Guzicka, M., Rożkowski, R. 2021. Analysis of genotypeby-environment interaction in a multisite progeny test with Scots pine for supporting selection decisions. European Journal of Forest Research, 140, 1457–1467. DOI: 10.1007/s10342-021-01417-5 .
  5. Caudullo, G., Welk, E., San-Miguel-Ayanz, J. 2017. Chorological maps for the main European woody species. Data in Brief, 12, 662–666. DOI: 10.1016/j.dib.2017.05.007.
  6. Czacharowski, M., Drozdowski, S. 2021. Management of Scots pine (Pinus sylvestris L.) stands under changing environmental and social conditions. Sylwan, 165 (5), 355–370.
  7. Dukat, P., Ziemblińska, K., Räsänen, M., Vesala, T., Olejnik, J., Urbaniak, M. 2023. Scots pine responses to drought investigated with eddy covariance and sap flow methods. European Journal of Forest Research, 142, 671–690. DOI: 10.1007/s10342-023-01549-w.
  8. Dyderski, M.K., Paź, S., Frelich, L.E., Jagodziń-ski, A.M. 2018. How much does climate change threaten European forest tree species distributions? Global Change Biology, 24, 1150–1163. DOI: 10.1111/gcb.13925.
  9. Eilmann, B., Zweifel, R., Buchmann, N., Fonti, P., Rigling, A. 2009. Drought-induced adaptation of the xylem in Scots pine and pubescent oak. Tree Physiology, 29, 1011–1020. DOI: 10.1093/treephys/tpp035.
  10. Gawęda, P., Grodzki, W. 2020. The influence of stand and habitat characteristics on the occurrence of pine sawflies Diprion pini L. and Gilpinia virens (Klug) (Hymenoptera, Diprionidae) in selected areas of northern Poland. Forest Research Papers, 81 (3), 99–106.
  11. Granier, A. 1985. A new method of sap flow measurement in tree stems. Annals of Forest Science, 42 (2), 193–200.
  12. Haapanen, M., Velling, P., Annala, M.L. 1997. Patogeny trial estimates of genetic parameters for growth and quality trails in Scots pine. Silva Fennica, 31, 3–12.
  13. Hejnowicz, Z. 2002. Anatomia i histogeneza roślin naczyniowych. Organy wegetatywne. PWN, Warsaw, Poland.
  14. Hlávková, D., Doležal, P. 2022. Cambioxylophagous pests of Scots pine: Ecological physiology of European populations – A review. Frontiers Forests and Global Change, 5. DOI: 10.3389/ffgc.2022.864651.
  15. Jakubowski, J., Gornowicz, R., Stempski, W. 2020. Height of a seve-year old Scots pine plantation in fresh coniferous forest site type depending on different methods of site preparation. Acta Scientarum Polonorum Silvarum Colendarum Ratio et Industria Lignaria, 19 (3), 167–175.
  16. Jaszczak, R. 2005. Defoliation of Scots pine (Pinus sylvestris L.) crowns of the IIIrd and IVth age classes and its significance for the interpretation of results of forest monitoring in Poland. Acta Scientarum Polonorum Silvarum Colendarum Ratio et Industria Lignaria, 4 (2), 25–34.
  17. Kacperska, A. 2005. Gospodarka wodna. In: Fizjologia roślin (eds. Kopcewicz J., Lewak S.). Warsaw, Poland, 214–218.
  18. Kacperska, A. 2005. Reakceje roślin na abiotyczne czynniki. In: Fizjologia roślin (eds. Kopcewicz J., Lewak S.). PWN, Warsaw, Poland, 612–678.
  19. Kellomäki, S., Wang, K-Y. 1998. Sap flow in Scots pines growing under conditions of yearround carbon dioxide enrichment and temperature elevation. Palnt, Cell and Environment, 21, 969–981.
  20. Klisz, M. et al. 2023. Local site conditions reduce interspecific differences in climate sensitivity between native and non-native pines. Available at https://ssrn.com/abstract=4394240 or http://dx.doi.org/10.2139/ssrn.4394240.
  21. Kieliszewska-Rokicka, B. 1993. Transport. In: Biologia sosny zwyczajnej (eds. S. Białobok, A. Boratyński, W. Bugała). PAN, Warsaw, Poland, 125–137.
  22. Konatowska, M., Przybylski, P., Rutkowski, P., Tyburski, Ł., Fyałkowska, K. 2021. Hemispherical canopy photos in the assessment of the impact of canopy closure on the plant species composition in the selected old tree stands of Kampinoski National Park. Acta Scientarum Polonorum Silvarum Colendarum Ratio et Industria Lignaria, 20 (2), 103–114. DOI: 10.17306/J.AFW.2021.2.10.
  23. Koivula, M., Silvennoinen, H., Koivula, H., Tikkanen, J., Tyrväinen, L. 2020. Continuous-cover management and attractiveness of managed Scots pine forests. Canadian Journal of Forest Research, 50 (8), 819–828.
  24. Kowalczyk, J. 2013. Międzypokoleniowa zmienność struktury genetycznej wybranych drzewostanów sosny zwyczajnej (Pinus sylvestris L.). Instytut Badawczy Leśnictwa, Sękocin Stary.
  25. Krakau, U.K., Liesebach, M., Aronen, T., Lelu-Walter, MA., Schneck, V. 2013. Scots pine (Pinus sylvestris L.). In: Forest tree breeding in Europe. Managing forest ecosystems, vol. 25 (ed. L. Pâques). Springer, Dordrecht, 267–323. DOI: 10.1007/978-94-007-6146-9_6.
  26. Krzywański, Z., Wójcik-Wojtkowiak, D. 2002. Zarys fizjologii roślin. Akademia Rolnicza w Poznaniu, 137–140.
  27. Granier, A., Biron, P., Breda, N., Pontailler, JY., Saugier, B. 1996. Transpiration of trees and forest stands: short and longterm monitoring using saplow methods. Global Change Bilogy, 2, 265–274.
  28. Lech, P. et al. 2023. Stan zdrowotny lasów Polski w 2022 roku. Forest Research Institute, Sękocin Stary. Available at https://www.gios.gov.pl/monlas/raporty/Stan%20zdrowotny%20las%C3%B3w%20Polski%202022%20synteza.pdf (access on 04.07.2024).
  29. Linder, D., Troeng, E. 1980. Photosynthesis and transpiration of 20-yera-old Scot pine. In: Structure and function of Northern coniferous forests: An ecosystem study (ed. T. Persson). Ecological Bulletins, Stockholm, 165–181.
  30. Martinsson, O., 1987. Scots pine resistance to pine twist rust-conformity between the resistance found in artificial environment and field trials. Silvae Genetica, 36 (1), 15–21.
  31. Mátyás, C., Ackzell, L., Samuel, C.J.A. 2004. EUFORGEN Technical Guidelines for genetic conservation and use for Scots pine (Pinus sylvestris). International Plant Genetic Resources Institute, Rome.
  32. Nilsson, J.E. 1987. Estimation of average heterozygosity ang genetic distance from a small numer of individuals. Genetics, 89, 583–590.
  33. Oleksyn, J. 1993. Fizjologia. In: Biologia sosny zwyczajnej (eds. S. Białobok, A. Boratyński, W. Bugała). PAN, Warsaw, Poland, 94–96.
  34. Partanen, J., Beuker, E. 1999. Effects of photoperiod and thermal time on the growth rhythm of Pinus sylvestris seedlings. Scandinavian Journal of Forest Research, 14, 487–497.
  35. Przybylski, P., Mohytych, V., Rutkowski, P., Tereba, A., Tyburski, Ł., Fyalkowska, K. 2021. Relationships between some biodiversity indicators and crown damage of Pinus sylvestris L. in natural old growth pine forests. Sustainability, 13, 1239. DOI: 10.3390/su13031239.
  36. Przybylski, P., Tyburski, Ł., Mohytych, V. 2020. The relationship between height and diameter trees of Scots pine (Pinus sylvestris L.) and the extent of crown defoliation in the Kampinos National Park. Folia Forestalia Polonica, Ser. A – Forestry, 62 (1), 22–30. DOI: 10.2478/ffp-2020-0003.
  37. Przybylski, P., Jastrzȩbowski, S., Ukalski, K., Tyburski, Ł., Konatowska, M. 2022. Quantitative and qualitative assessment of pine seedlings under controlled undergrowth disturbance: Fire and soil scarification. Frontiers Forests and Global Change, 5, 1023155. DOI: 10.3389/ffgc.2022.1023155.
  38. Rutkowski, P., Konatowska, M., Wajsowicz, T. 2019. Tree-soil-water relationships in European black alder forest – case study. International Scientific Journal Mechanization in Agriculture and Conserving of The Resources, 65, 200–203.
  39. Rutkowski, P., Konatowska, M., Wajsowicz, T.S. 2020. Long-term conductivity measurements as a source of knowledge about tree life cycles. Geology, Earth and Marine Sciences, 2 (2), 2–9. DOI: 10.31038/GEMS.2020223.
  40. Rutkowski, P., Diatta, J., Konatowska, M., Andrzejewska, A., Tyburski, Ł., Przybylski, P. 2020. Geochemical referencing of natural forest contamination in Poland. Forests, 11 (2). DOI: 10.3390/f11020157.
  41. Ryan, M.G., Linder, S., Vose, J.M., Hubbard, R.M. 1994. Dark respiration of pine. Ecological Bulletins, 43, 50–63.
  42. SAS/STAT 14.3 User’s Guide. 2017. SAS Institute Inc., Cary, NC, USA.
  43. Semerci, A., Semerci, H., Çalişkan, B., Çiçek, N., Ekmekçi, Y., Mencuccini, M. 2017. Morphological and physiological responses to drought stress of European provenances of Scots pine. Europena Journal of Forest Research, 136, 91–104. DOI: 10.1007/s10342-016-1011-6.
  44. Ślęzak, G. 2010. Atlas wad drewna. Powszechne Wydawnictwo Rolnicze i Leśne, Warsaw.
  45. Tyburski, Ł. 2015. The differentation of development phases of forest stands in Kampinos National Park. In: Forests in national parks and nature reserves (eds. D. Mraczak, Ł. Tyburski). Izabelin, 185–191.
  46. Tyburski, Ł., Przybylski, P. 2016. Health condition of the Scots pine (Pinus sylvestris) in Kampinos National Park – preliminary studies. Folia Forestalia Polonica, Ser. A – Forestry, 58 (4), 240–245.
  47. Wang, H., Tetzlaff, D., Dick, J., Soulsby, Ch. 2017. Assessing the environmental controls on Scots pine transpiration and the implications for water partitioning in a boreal headwater catchment. Agricultural and Forest Meteorology, 240/241, 58–56. DOI: 10.1016/j.agrformet.2017.04.002.
  48. Wang, H., Terzlaff, D., Soulsby, Ch. 2019. Hysteretic response of sap flow in Scots pine (Pinus sylvestris) to meteorological forcing in a humid low-energy headwater catchment. Ecohydrology, 12 (6). DOI: 10.1002/eco.2125.
  49. Verbeeck, H. et al. 2007. Stored water use and transpiration in Scots pine: a modeling analysis with ANAFORE. Tree Physiology, 27 (12), 1671–1685. DOI: 10.1093/treephys/27.12.1671.
  50. Villari, C., Battisti, A., Chakraborty, S., Michelozzi, M., Bonello, P., Faccoli, M. 2012. Nutritional and pathogenic fungi associated with the pine engraver beetle trigger comparable defenses in Scots pine. Tree Physiology, 32 (7), 867–879. DOI: 10.1093/treephys/tps056.
  51. Vonesh, E.F., Chinchilli, V.P. 1997. Linear and nonlinear models for the analysis of repeated measurements. Marcel Deekker Inc., NewYork. DOI: 10.1201/9781482293272.
  52. Vonesh, E.F., Chinchilli, V.P., Pu, K.W. 1996. Goodness-of-fit in generalized nonlinear mixed-effects models. Biometrics, 52 (2), 572–587. DOI: 10.2307/2532896.
  53. Zajączkowski, G. et al. 2022. Raport o stanie lasów w Polsce 2021. Państwowe Gospodarstwo Leśne Lasy Państwowe, Warsaw.
  54. Zweifel, R., Häsler, R. 2001. Dynamics of water storage in mature subalpine Picea abies: temporal and spatial patterns of change in stem radius. Tree Physiology, 21 (7), 561–569.
  55. Zweifel, R., Steppe, K., Sterck, F.J. 2007. Stomatal regulation by microclimate and tree water relations: interpreting ecophysiological field data with a hydraulic plant model. Journal of Experimental Botany, (58), 2113–2131.
DOI: https://doi.org/10.2478/ffp-2024-0016 | Journal eISSN: 2199-5907 | Journal ISSN: 0071-6677
Language: English
Page range: 215 - 227
Submitted on: Apr 18, 2024
Accepted on: Jul 2, 2024
Published on: Sep 12, 2024
Published by: Forest Research Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Łukasz Tyburski, Paweł Przybylski, Krzysztof Ukalski, Monika Konatowska, Paweł Rutkowski, published by Forest Research Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.