Have a personal or library account? Click to login
On the Application of Laser Shock Peening as a Manufacturing and Repair Process to Improve the Fatigue Performance of Refill Friction Stir Spot-Welded AA2024-T3 Joints Cover

On the Application of Laser Shock Peening as a Manufacturing and Repair Process to Improve the Fatigue Performance of Refill Friction Stir Spot-Welded AA2024-T3 Joints

Open Access
|Jul 2025

References

  1. Achintha, M., Nowell, D., Furfari, D., Sackett, E.E., Bache, M.R. (2014). Fatigue behavior of geometric features subjected to laser shock peening: Experiments and modeling. International Journal of Fatigue, 62, 171–179. https://doi.org/10.1016/j.ijfatigue.2013.04.016
  2. Becker, N., Kuhn, D., Piochowiak, J., Klusemann, B. (2025). Fatigue life enhancement via residual stress engineering due to local forming during refill friction stir spot welding. Journal of Materials Research and Technology, 36, 2951–2959. https://doi.org/10.1016/j.jmrt.2025.03.205
  3. Berthe, L., Fabbro, R., Peyre, P., Bartnicki, E. (1999). Wavelength dependent of laser shockwave generation in the water-confinement regime. Journal of Applied Physics, 85, 7552–7555. https://doi.org/10.1063/1.370553
  4. Brzostek, R.C., Suhuddin, U., dos Santos, J.F. (2018). Fatigue assessment of refill friction stir spot weld in AA 2024-T3 similar joints. Fatigue and Fracture of Engineering Materials and Structures, 41(5), 1208–1223. https://doi.org/10.1111/ffe.12764
  5. Busse, D.O., Irving, P.E., Ganguly, S., Furfari, D., Polese, C. (2018). Improving fatigue performance of AA 2024-T3 clad aeronautical riveted lap-joints using laser-peening, In: Proceedings of the 29th ICAF Symposium, Curran Associates Inc., New York.
  6. Chupakhin, S., Kashaev, N., Huber, N. (2016), Effect of elasto-plastic material behaviour on determination of residual stress profiles using the hole drilling method, The Journal of Strain Analysis for Engineering Design, 51(8), 572–581. https://doi.org/10.1177/0309324716663940
  7. Ding, K., Ye, L. (2006). Laser Shock Peening: Performance and Process Simulation. Woodhead Publishing, Cambridge.
  8. Gariépy, A., Bridier, F., Hoseini, M., Bocher, P., Perron, C., Lévesque, M. (2013). Experimental and numerical investigation of material heterogeneity in shot peened aluminium alloy AA2024-T351. Surface and Coatings Technology, 219, 15-30. https://doi.org/10.1016/j.surfcoat.2012.12.046
  9. Fairand, B.P., Clauer, A.H., Jung, R.G., Wilcox, B.A. (1974). Quantitative assessment of laser‐induced stress waves generated at confined surfaces. Applied Physics Letters, 25, 431–433. https://doi.org/10.1063/1.1655536
  10. Hatamleh, O. (2009). A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA 2195 joints. International Journal of Fatigue, 31(5), 974–988. https://doi.org/10.1016/j.ijfatigue.2008.03.029
  11. Kallien, Z., Keller, S., Ventzke, V., Kashaev, N., Klusemann, B. (2019). Effect of laser peening process parameters and sequences on residual stress profiles. Metals, 9(6), 655. https://doi.org/10.3390/met9060655
  12. Kashaev, N., Riekehr, S., Falck, R., et al. (2015). Development of laser beam welding concepts for fuselage panels. In: Proceedings of the 5th CEAS Air & Space Conference, Delft, paper no. 15.
  13. Kashaev, N., Ventzke, V., Horstmann, M., et al. (2017). Effects of laser shock peening on the microstructure and fatigue crack propagation behaviour of thin AA2024 specimens. International Journal of Fatigue, 98, 223–233. https://doi.org/10.1016/j.ijfatigue.2017.01.042
  14. Kashaev, N., Chupakhin, S., Ventzke, V., et. al. (2018). Fatigue Life Extension of AA2024 Specimens and Integral Structures by Laser Shock Peening. MATEC Web of Conferences, 165, 18001. https://doi.org/10.1051/matecconf/201816518001
  15. Kashaev, N., Ventzke, V., Çam, G. (2018). Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications. Journal of Manufacturing Processes, 36, 571–600. https://doi.org/10.1016/j.jmapro.2018.10.005
  16. Kashaev, N., Ushmaev, D., Ventzke, V., Klusemann, B., Fomin, F. (2020). On the application of laser shock peening for retardation of surface fatigue cracks in laser beam-welded AA6056. Fatigue and Fracture of Engineering Materials and Structures, 43(7), 1500–1513. https://doi.org/10.1111/ffe.13226
  17. Kashaev, N., Keller, S., et al. (2023). Retardation of fatigue cracks in welded structures through laser shock peening. In: Proceedings of the 31st ICAF Symposium, Delft, paper no. 122.
  18. Korbel, A. (2022). Effect of aircraft rivet installation process and production variables on residual stress, clamping force and fatigue behaviour of thin sheet riveted lap joints. Thin-Walled Structures, 181, 110041. https://doi.org/10.1016/j.tws.2022.110041
  19. Montross, C.S., Wei, T., Ye, L., Clark, G., Mai, Y.W. (2002). Laser shock processing and its effects on microstructure and properties of metal alloys: a review. International Journal of Fatigue, 24, 1021–1036. https://doi.org/10.1016/S0142-1123(02)00022-1
  20. Ocaña, J.L., Correa, C., Porro, J.A., Díaz, M., de Lara, L.R., Peral, D. (2015). Induction of through-thickness compressive residual stress fields in thin Al2024-T351 plates by laser shock processing. International Journal of Structural Integrity, 6(6), 725–736. https://doi.org/10.1108/IJSI-10-2014-0051
  21. Richards, D.G., Prangnell, P.B., Williams, S.W., Withers, P.J. (2008). Global mechanical tensioning for the management of residual stresses in welds. Materials Science and Engineering: A, 489(1-2), 351–362. https://doi.org/10.1016/j.msea.2007.12.042
  22. Schilling, C., dos Santos, J. (2004). US Patent, no. US 6,722,556 B2.
  23. Schijve, J. (2001). Fatigue of Structures and Materials, 2nd ed., Springer, Delft.
  24. Sikhamov, R., Fomin, F., Klusemann, B., Kashaev, N. (2020). The influence of laser shock peening on fatigue properties of AA2024-T3 alloy with a fastener hole. Metals, 10(4), 495. https://doi.org/10.3390/met10040495
  25. Steinzig, M., Ponslet, E. (2003). Residual stress measurement using the hole drilling method and laser speckle interferometry: Part I. Experimental Techniques, 27(3), 43–46. https://doi.org/10.1111/j.1747-1567.2003.tb00114.x
  26. Sticchi, M., Schnubel, D., Kashaev, N., and Huber, N. (2015). Review of residual stress modification techniques for extending the fatigue life of metallic aircraft components. Applied Mechanics Reviews, 67(1), 010801. https://doi.org/10.1115/1.4028160
  27. Toparli, M.B., Fitzpatrick, M.E. (2019). Effect of Overlapping of Peen Spots on Residual Stresses in Laser-Peened Aluminium Sheets. Metallurgical and Materials Transactions A, 50, 1109–1112. https://doi.org/10.1007/s11661-018-05100-0
  28. Yang, Y., Dong, P., Tian, X., Zhang, Z. (1998). Prevention of welding hot cracking of high strength aluminium alloys by mechanical rolling. In: Proceedings of the 5th International Conference on Trends in Welding Research. Eds. J. M. Vitek, S.A. David, J. A. Johnson, H. B. Smart and T. DebRoy, Pine Mountain, Georgia, p. 700–705.
DOI: https://doi.org/10.2478/fas-2024-0003 | Journal eISSN: 2300-7591 | Journal ISSN: 2081-7738
Language: English
Page range: 29 - 44
Published on: Jul 7, 2025
Published by: ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Nikolai Kashaev, Tim Mohr, Sören Keller, Uceu Fuad Hasan Suhuddin, Benjamin Klusemann, Falk Dorn, Volker Ventzke, published by ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.