Have a personal or library account? Click to login
Comparative Analysis of Deep Learning and Decision Tree Approaches for Predicting Aircraft Engine Remaining Useful Life Cover

Comparative Analysis of Deep Learning and Decision Tree Approaches for Predicting Aircraft Engine Remaining Useful Life

Open Access
|Nov 2024

References

  1. Azadeh, A., Asadzadeh, S. M., Salehi, N., & Firoozi, M. (2015). Condition-based maintenance effectiveness for series-parallel power generation system – A combined Markovian simulation model. Reliability Engineering & System Safety, 142, 357–368. https://doi.org/10.1016/j.ress.2015.04.009
  2. Ben Ali, J., Chebel-Morello, B., Saidi, L., Malinowski, S., & Fnaiech, F. (2015). Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network. Mechanical Systems and Signal Processing, 56, 150–172. https://doi.org/10.1016/j.ymssp.2014.10.014
  3. Benkedjouh, T., Medjaher, K., Zerhouni, N., & Rechak, S. (2013). Remaining useful life estimation based on nonlinear feature reduction and support vector regression. Engineering Applications of Artificial Intelligence, 26(7), 1751–1760. https://doi.org/10.1016/j.engappai.2013.02.006
  4. Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014
  5. Charbuty, B., & Abdulazeez, A. (2021). Classification based on decision tree algorithm for machine learning. Journal of Applied Science and Technology Trends, 2(01), 20–28. https://doi.org/10.38094/jastt20165
  6. Cubillo, A., Perinpanayagam, S., & Esperon-Miguez, M. (2016). A review of physicsbased models in prognostics: Application to gears and bearings of rotating machinery. Advances in Mechanical Engineering, 8(8), 1–21. https://doi.org/10.1177/1687814016664660
  7. De Oña, R., Eboli, L., & Mazzulla, G. (2014). Key factors affecting rail service quality in Northern Italy: A decision tree approach. Transport, 29(1), 75–83. https://doi.org/10.3846/16484142.2014.898216
  8. DeCastro, J. A., Litt, J. S., & Frederick, D. K. (2008). A modular aero-propulsion system simulation of a large commercial aircraft engine. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. https://doi.org/10.2514/6.2008-4579
  9. Elsheikh, A., Yacout, S., & Ouali, M. S. (2019). Bidirectional handshaking LSTM for remaining useful life prediction. Neurocomputing, 323, 148–156. https://doi.org/10.1016/j.neucom.2018.09.076
  10. Frederick, D. K., DeCastro, J. A., & Litt, J. S. (2007). User’s guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS). NASA Technical Reports Server (NTRS). https://ntrs.nasa.gov/citations/20070034949
  11. Gebraeel, N., Lawley, M., Liu, R., & Parmeshwaran, V. (2004). Residual life predictions from vibration-based degradation signals: A neural network approach. IEEE Transactions on Reliability, 51(3), 694–700.
  12. Gehring, J., Auli, M., Grangier, D., Yarats, D., & Dauphin, Y. N. (2017). Convolutional sequence to sequence learning. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Vol. 1), 562–570. https://arxiv.org/abs/1705.03122
  13. Gonzalez, T. F. (2007). Handbook of approximation algorithms and metaheuristics. Chapman and Hall/CRC. https://doi.org/10.1201/9781420010749
  14. Heimes, F. O. (2008). Recurrent neural networks for remaining useful life estimation. 2008 International Conference on Prognostics and Health Management (PHM 2008). https://doi.org/10.1109/PHM.2008.4711422
  15. Heng, A., Zhang, S., Tan, A. C. C., & Mathew, J. (2009). Rotating machinery prognostics: State of the art, challenges, and opportunities. Mechanical Systems and Signal Processing, 23(3), 724–739. https://doi.org/10.1016/j.ymssp.2008.06.007
  16. Johnson, R., & Zhang, T. (2017). Deep pyramid convolutional neural networks for text categorization. ACL 2017 - 55th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Vol. 1), 562–570. https://doi.org/10.18653/v1/P17-1052
  17. Jouin, M., Gouriveau, R., Hissel, D., Péra, M. C., & Zerhouni, N. (2016). Degradations analysis and aging modeling for health assessment and prognostics of PEMFC. Reliability Engineering & System Safety, 148, 78–95. https://doi.org/10.1016/j.ress.2015.12.003
  18. Kali, Y., & Linn, M. (2010). Science. In International Encyclopedia of Education (3rd ed., pp. 468–474). https://doi.org/10.1016/B978-0-08-044894-7.00081-6
  19. Krizhevsky, B. A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84–90.
  20. Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., & Siegel, D. (2014). Prognostics and health management design for rotary machinery systems – Reviews, methodology, and applications. Mechanical Systems and Signal Processing, 42(1–2), 314–334. https://doi.org/10.1016/j.ymssp.2013.06.004
  21. Lei, Y., Li, N., Guo, L., Li, N., Yan, T., & Lin, J. (2018). Machinery health prognostics: A systematic review from data acquisition to RUL prediction. Mechanical Systems and Signal Processing, 104, 799–834. https://doi.org/10.1016/j.ymssp.2017.11.016
  22. Li, Y., Zhang, S., Wang, X., Liang, B., & Lu, W. (2019). Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review. Renewable and Sustainable Energy Reviews, 113, Article 109254. https://doi.org/10.1016/j.rser.2019.109254
  23. Liao, L., & Köttig, F. (2014). Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction. IEEE Transactions on Reliability, 63(1), 191–207. https://doi.org/10.1109/TR.2014.2299152
  24. Liao, L., Jin, W., & Pavel, R. (2016). Enhanced restricted Boltzmann machine with prognosability regularization for prognostics and health assessment. IEEE Transactions on Industrial Electronics, 63(11), 7076–7083. https://doi.org/10.1109/TIE.2016.2586442
  25. Navathe, S. B., Wu, W., Shekhar, S., Du, X., Wang, X. S., & Xiong, H. (2016). Database systems for advanced applications: 21st International Conference, DASFAA 2016, Dallas, TX, USA, April 16–19, 2016, Proceedings, Part I. Springer. https://doi.org/10.1007/978-3-319-32025-0
  26. Pecht, M., & Gu, J. (2009). Physics-of-failure-based prognostics for electronic products. Transactions of the Institute of Measurement and Control, 31(3–4), 309–322. https://doi.org/10.1177/0142331208092031
  27. Qian, Y., Yan, R., & Gao, R. X. (2017). A multi-time scale approach to remaining useful life prediction in rolling bearing. Mechanical Systems and Signal Processing, 83, 549– 567. https://doi.org/10.1016/j.ymssp.2016.06.031
  28. Rezaeian Jouybari, B., & Shang, Y. (2020). Deep learning for prognostics and health management: State of the art, challenges, and opportunities. Measurement: Journal of the International Measurement Confederation, 163, Article 107929. https://doi.org/10.1016/j.measurement.2020.107929
  29. Saxena, A., Goebel, K., Simon, D., & Eklund, N. (2008). Damage propagation modeling for aircraft engine run-to-failure simulation. 2008 International Conference on Prognostics and Health Management (PHM 2008). https://doi.org/10.1109/PHM.2008.4711414
  30. Shenfield, A., & Howarth, M. (2020). A novel deep learning model for the detection and identification of rolling element-bearing faults. Sensors (Switzerland), 20(18), Article 5112. https://doi.org/10.3390/s20185112
  31. Si, X. S., Wang, W., Hu, C. H., & Zhou, D. H. (2011). Remaining useful life estimation – A review on the statistical data-driven approaches. European Journal of Operational Research, 213(1), 1–14.
  32. Sikorska, J. Z., Hodkiewicz, M., & Ma, L. (2011). Prognostic modeling options for remaining useful life estimation by industry. Mechanical Systems and Signal Processing, 25(5), 1803–1836. https://doi.org/10.1016/j.ymssp.2010.11.018
  33. Sishi, M., & Telukdarie, A. (2021). The application of decision tree regression to optimize business processes. Proceedings of the International Conference on Industrial Engineering and Operations Management (No. Dm), 48–57.
  34. Stein, G., Chen, B., Wu, A. S., & Hua, K. A. (2005). Decision tree classifier for network intrusion detection with GA-based feature selection. Proceedings of the Annual Southeast Conference (Vol. 2), 2136–2141. https://doi.org/10.1145/1167253.1167288
  35. Suah, F. B. M. (2017). Preparation and characterization of a novel Co(II) optode based on polymer inclusion membrane. Analytical Chemistry Research, 12, 40–46. https://doi.org/10.1016/j.ancr.2017.02.001
  36. Tian, Z. (2012). An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring. Journal of Intelligent Manufacturing, 23(2), 227–237. https://doi.org/10.1007/s10845-009-0356-9
  37. Tian, Z., Wong, L., & Safaei, N. (2010). A neural network approach for remaining useful life prediction utilizing both failure and suspension histories. Mechanical Systems and Signal Processing, 24(5), 1501–1514.
  38. Xiao, H., Yuan, K., & Zhan, Z. (2022). System reliability analysis based on dependent Kriging predictions and parallel learning strategy. Reliability Engineering & System Safety, 218, Article 108198. https://doi.org/10.1016/j.ress.2022.108198
  39. Yan, R., Ma, Z., Zhao, Y., & Kokogiannakis, G. (2016). A decision tree-based data-driven diagnostic strategy for air handling units. Energy and Buildings, 133, 37–45. https://doi.org/10.1016/j.enbuild.2016.09.039
  40. Zhang, S., Peng, H., Fu, J., Lu, Y., & Luo, J. (2021). Multi-scale 2D temporal adjacency networks for moment localization with natural language. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2021.3120745
  41. Zhao, Z., Liang, B., Wang, X., & Lu, W. (2017). Remaining useful life prediction of aircraft engine based on degradation pattern learning. Reliability Engineering & System Safety, 164(457), 74–83. https://doi.org/10.1016/j.ress.2017.02.007
DOI: https://doi.org/10.2478/fas-2023-0012 | Journal eISSN: 2300-7591 | Journal ISSN: 2081-7738
Language: English
Page range: 183 - 200
Published on: Nov 19, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Hassina Madjour, Hanane Zermane, Djemaa Rahmouni, Mohammed Djamel Mouss, published by ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.