Have a personal or library account? Click to login
Investigating the Effects of Crack Orientation and Defects on Pipeline Fatigue Life Through Finite Element Analysis Cover

Investigating the Effects of Crack Orientation and Defects on Pipeline Fatigue Life Through Finite Element Analysis

Open Access
|Apr 2024

References

  1. Alberta Energy Regulator. (2020). Pipeline Performance (New Reports). https://www.aer.ca/protecting-what-matters/holding-industry-accountable/industryperformance/pipeline-performance
  2. Augustin, P. (2009). Simulation of fatigue crack growth in integrally stiffened panels under the constant amplitude and spectrum loadin. Fatigue of Aircraft Structures, 2009(1), 5–19. https://doi.org/10.2478/v10164-010-0001-2
  3. Ballantyne, D. (2008). M7.8 Southern San Andreas Fault Earthquake Scenario: Oil and Gas Pipelines (California Geological Survey Preliminary Report 25 version 1.0). MMI Engineering.
  4. Benachour, M., Benachour, N., & Benguediab, M. (2017). Fractograpic observations and effect of stress ratio on fatigue striations spacing in aluminium alloy 2024 T351. Materials Science Forum, 887, 3–8. https://doi.org/10.4028/www.scientific.net/msf.887.3
  5. Benhamena, A., Aminallah, L., Bouiadjra, B. B., Benguediab, M., Amrouche, A., & Benseddiq, N. (2011). J integral solution for semi-elliptical surface crack in high density poly-ethylene pipe under bending. Materials & Design, 32(5), 2561–2569. https://doi.org/10.1016/j.matdes.2011.01.045
  6. Bibly, B. A., Cotrell, A. H., & Swinden, K. H. (1963). The spread of plastic yield from a notch. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 272(1350), 304–314. https://doi.org/10.1098/rspa.1963.0055
  7. Broek, D. (1989). The practical use of fracture mechanics. Kluwer Academic Publishers. https://doi.org/10.1002/mawe.19890200504
  8. Chen, Y., Zhang, H., Zhang, J., Liu, X., Li, X., & Zhou, J. (2015). Failure assessment of X80 pipeline with interacting corrosion defects. Engineering Failure Analysis, 47, 67–76. https://doi.org/10.1016/j.engfailanal.2014.09.013
  9. Cristoffanini, C., Karkare, M., & Aceituno, M. (2014). Transient simulation of longdistance tailings and concentrate pipelines for operator training. Presented at SME Annual Meeting/Exhibit, February 24-26, 2014, Salt Lake City, UT, USA, 1–7. https://www.andritz.com/resource/blob/15062/50bf8f04c35997dbce9c51b8b3d2fab3/aa-dynamic-simulation-long-tailings-concentrate-pipelines-data.pdf
  10. Czaban, M. (2018). Aircraft corrosion – review of corrosion processes and its effects in selected cases. Fatigue of Aircraft Structures, 2018(10), 5–20. https://doi.org/10.2478/fas-2018-0001
  11. Elber, W. (1970). Fatigue crack closure under cyclic tension. Engineering Fracture Mechanics, 2, 445–476.
  12. European Gas Pipeline Incident Data Group. (2020). Gas Pipeline Incidents: 11th Report of the European Gas Pipeline Incident Data Group (period 1970 – 2019) (Doc. number VA 20.0432). https://www.egig.eu/reports
  13. Fatigue crack growth computer program ‘NASGRO’ version 3.0 - reference manual (Technical Report JSC-22267B). (2001). NASA. http://www.nasgro.swri.org
  14. Forman, R. G., Kearney, V. E., & Engle, R. M. (1967). Numerical analysis of crack propagation in cyclic-loaded structures. Journal of Basic Engineering, 89(3), 459–463. https://doi.org/10.1115/1.3609637
  15. Fuiorea, I., Bartis, D., Nedelcu, R., & Frunzulica, F. (2009). Numerical models for fatigue crack evolution study. Fatigue of Aircraft Structures, 2009(1), 42–49. https://doi.org/10.2478/v10164-010-0004-z
  16. Harter, J. A. (2002). AFGROW users guide and technical manual. (Technical Report AFRL-VA-WP-TR-2002-XXX). U.S. Air Force Research Laboratory. http://afgrow.wpafb.af.mil
  17. Hredil, M., Krechkovska, H., Tsyrulnyk, O., & Student, O. (2020). Fatigue crack growth in operated gas pipeline steels. Procedia Structural Integrity, 26, 409–416. https://doi.org/10.1016/j.prostr.2020.06.052
  18. Irfan, O. M., & Omar, H. M. (2017). Experimental study and prediction of erosioncorrosion of AA6066 aluminum using artificial neural network. Engineering, Materials Science, 17(06), 17–31. https://www.ijens.org/IJMMEVol17Issue06.html
  19. Jasztal, M., Kocanda, D., & Tomaszek, H. (2010). Predicting fatigue crack growth and fatigue life under variable amplitude loading. Fatigue of Aircraft Structures, 2010(2), 37–51. https://doi.org/10.2478/v10164-010-0024-8
  20. Kaddouri, K., BachirBouaidjra, B., Belhouari, M., & Madani, K. (2004). Elastic plastic analysis of cracks in pipe. In 15th European Conference on Fracture: ECF 15 - advanced fracture mechanics for life and safety assessments: Aug.11 - 13, 2004, KTH Stockholm, Sweden.
  21. Kamińska, P., Synaszko, P., Ciężak, P., & Dragan, K. (2020). Analysis of the corrosion resistance of aircraft structure joints with double-sided rivets and single-sided rivets. Fatigue of Aircraft Structures, 2020(12), 57–68. https://doi.org/10.2478/fas-2020-0006
  22. Kebir, T., Benguediab, M., & Imad, A. (2017). A model for fatigue crack growth in the paris regime under the variability of cyclic hardening and elastic properties. Fatigue of Aircraft Structures, 2017(9), 117–135. https://doi.org/10.1515/fas-2017-0010
  23. Kebir, T., Correia, J. A. F. O., Benguediab, M., & Imad, A. (2021). A FCG model and the graphical user interface under Matlab for predicting fatigue life: Parametric studies. Fatigue of Aircraft Structures, 2021(13), 116–139. https://doi.org/10.2478/fas-2021-0011
  24. Kocańda, D., & Torzewski, J. (2009). Deterministic approach to predicting the fatigue crack growth in the 2024-T3 aluminum alloy under variable amplitude loading. Fatigue of Aircraft Structures, 2009(1), 102–115. https://doi.org/10.2478/v10164-010-0010-1
  25. Kudari, S. K., & Sharanaprabhu, C. M. (2017). The effect of anodizing process parameters on the fatigue life of 2024-t-351-aluminium alloy. Fatigue of Aircraft Structures, 2017(9), 109–115. https://doi.org/10.1515/fas-2017-0009
  26. Low, E. T. (2021). FEM fatigue simulation for an offshore pipeline containing interacting cracks (Final Year Project (FYP)). Nanyang Technological University. https://hdl.handle.net/10356/148866
  27. Mechab, B., Malika, M., Salem, M., & Boualem, S. (2020). Probabilistic elastic-plastic fracture mechanics analysis of propagation of cracks in pipes under internal pressure. Frattura ed Integrità Strutturale, 14(54), 202–210. https://doi.org/10.3221/igf-esis.54.15
  28. Mohitpour, M., Murray, A., McManus, M., & Colquhoun, I. (2010). Pipeline Integrity Assurance. ASME Press. https://doi.org/10.1115/1.859568
  29. Moussouni, A., Benachour, M., & Benachour, N. (2023). Prediction of fatigue cracks using gamma function. Fatigue of Aircraft Structures. https://doi.org/10.2478/fas-2022-0004
  30. Paris, P. C., & Erdogan, F. (1963). A critical analysis of crack propagation laws. Journal of Basic Engineering, 85, 528–533.
  31. Soares, E., Bruère, V. M., Afonso, S. M. B., Willmersdorf, R. B., Lyra, P. R. M., & Bouchonneau, N. (2019). Structural integrity analysis of pipelines with interacting corrosion defects by multiphysics modeling. Engineering Failure Analysis, 97, 91–102. https://doi.org/10.1016/j.engfailanal.2019.01.009
  32. Sun, J., & Cheng, Y. F. (2019). Modelling of mechano-electrochemical interaction of multiple longitudinally aligned corrosion defects on oil/gas pipelines. Engineering Structures, 190, 9–19. https://doi.org/10.1016/j.engstruct.2019.04.010
  33. Weertman, J. (1973). Theory of fatigue crack growth based on a BCS Crack theory with work hardening. International Journal of Fracture, 9, 125–131. https://doi.org/10.1007/BF00041854
  34. Witek, L. (2011). Experimental and numerical crack initiation analysis of the compressor blades working in resonance conditions. Fatigue of Aircraft Structures, 2011(3), 134–153. https://doi.org/10.2478/v10164-010-0045-3
  35. Zarea, M., Piazza, M., Vignal, G., Jones, C., Rau, J., & Wang, R. (2013). Review of R&D in support of mechanical damage threat management in onshore transmission pipeline operations. Proceedings of the 2012 9th International Pipeline Conference. Volume 2: Pipeline Integrity Management. Calgary, Alberta, Canada. September 24–28, 2012. ASME, 569–582.
  36. Zhang, C., Sun, X., Li, Y., Zhang, X., Zhang, X., Yang, X., & Li, F. (2018). Hydraulic characteristics of transporting a piped carriage in a horizontal pipe based on the bidirectional fluid-structure interaction. Mathematical Problems in Engineering, 2018, 1–27. https://doi.org/10.1155/2018/8317843
  37. Zhang, Y., Xiao, Z., & Luo, J. (2018). Fatigue crack growth investigation on offshore pipelines with three-dimensional interacting cracks. Geoscience Frontiers, 9(6), 1689–1697. https://doi.org/10.1016/j.gsf.2017.09.011
DOI: https://doi.org/10.2478/fas-2023-0001 | Journal eISSN: 2300-7591 | Journal ISSN: 2081-7738
Language: English
Page range: 1 - 21
Published on: Apr 29, 2024
Published by: ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Tayeb Kebir, Mohamed Belhamiani, Ahmed Amine Daikh, Mohamed Benguediab, Mustapha Benachour, published by ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.