References
- Alberta Energy Regulator. (2020). Pipeline Performance (New Reports). https://www.aer.ca/protecting-what-matters/holding-industry-accountable/industryperformance/pipeline-performance
- Augustin, P. (2009). Simulation of fatigue crack growth in integrally stiffened panels under the constant amplitude and spectrum loadin. Fatigue of Aircraft Structures, 2009(1), 5–19. https://doi.org/10.2478/v10164-010-0001-2
- Ballantyne, D. (2008). M7.8 Southern San Andreas Fault Earthquake Scenario: Oil and Gas Pipelines (California Geological Survey Preliminary Report 25 version 1.0). MMI Engineering.
- Benachour, M., Benachour, N., & Benguediab, M. (2017). Fractograpic observations and effect of stress ratio on fatigue striations spacing in aluminium alloy 2024 T351. Materials Science Forum, 887, 3–8. https://doi.org/10.4028/www.scientific.net/msf.887.3
- Benhamena, A., Aminallah, L., Bouiadjra, B. B., Benguediab, M., Amrouche, A., & Benseddiq, N. (2011). J integral solution for semi-elliptical surface crack in high density poly-ethylene pipe under bending. Materials & Design, 32(5), 2561–2569. https://doi.org/10.1016/j.matdes.2011.01.045
- Bibly, B. A., Cotrell, A. H., & Swinden, K. H. (1963). The spread of plastic yield from a notch. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 272(1350), 304–314. https://doi.org/10.1098/rspa.1963.0055
- Broek, D. (1989). The practical use of fracture mechanics. Kluwer Academic Publishers. https://doi.org/10.1002/mawe.19890200504
- Chen, Y., Zhang, H., Zhang, J., Liu, X., Li, X., & Zhou, J. (2015). Failure assessment of X80 pipeline with interacting corrosion defects. Engineering Failure Analysis, 47, 67–76. https://doi.org/10.1016/j.engfailanal.2014.09.013
- Cristoffanini, C., Karkare, M., & Aceituno, M. (2014). Transient simulation of longdistance tailings and concentrate pipelines for operator training. Presented at SME Annual Meeting/Exhibit, February 24-26, 2014, Salt Lake City, UT, USA, 1–7. https://www.andritz.com/resource/blob/15062/50bf8f04c35997dbce9c51b8b3d2fab3/aa-dynamic-simulation-long-tailings-concentrate-pipelines-data.pdf
- Czaban, M. (2018). Aircraft corrosion – review of corrosion processes and its effects in selected cases. Fatigue of Aircraft Structures, 2018(10), 5–20. https://doi.org/10.2478/fas-2018-0001
- Elber, W. (1970). Fatigue crack closure under cyclic tension. Engineering Fracture Mechanics, 2, 445–476.
- European Gas Pipeline Incident Data Group. (2020). Gas Pipeline Incidents: 11th Report of the European Gas Pipeline Incident Data Group (period 1970 – 2019) (Doc. number VA 20.0432). https://www.egig.eu/reports
- Fatigue crack growth computer program ‘NASGRO’ version 3.0 - reference manual (Technical Report JSC-22267B). (2001). NASA. http://www.nasgro.swri.org
- Forman, R. G., Kearney, V. E., & Engle, R. M. (1967). Numerical analysis of crack propagation in cyclic-loaded structures. Journal of Basic Engineering, 89(3), 459–463. https://doi.org/10.1115/1.3609637
- Fuiorea, I., Bartis, D., Nedelcu, R., & Frunzulica, F. (2009). Numerical models for fatigue crack evolution study. Fatigue of Aircraft Structures, 2009(1), 42–49. https://doi.org/10.2478/v10164-010-0004-z
- Harter, J. A. (2002). AFGROW users guide and technical manual. (Technical Report AFRL-VA-WP-TR-2002-XXX). U.S. Air Force Research Laboratory. http://afgrow.wpafb.af.mil
- Hredil, M., Krechkovska, H., Tsyrulnyk, O., & Student, O. (2020). Fatigue crack growth in operated gas pipeline steels. Procedia Structural Integrity, 26, 409–416. https://doi.org/10.1016/j.prostr.2020.06.052
- Irfan, O. M., & Omar, H. M. (2017). Experimental study and prediction of erosioncorrosion of AA6066 aluminum using artificial neural network. Engineering, Materials Science, 17(06), 17–31. https://www.ijens.org/IJMMEVol17Issue06.html
- Jasztal, M., Kocanda, D., & Tomaszek, H. (2010). Predicting fatigue crack growth and fatigue life under variable amplitude loading. Fatigue of Aircraft Structures, 2010(2), 37–51. https://doi.org/10.2478/v10164-010-0024-8
- Kaddouri, K., BachirBouaidjra, B., Belhouari, M., & Madani, K. (2004). Elastic plastic analysis of cracks in pipe. In 15th European Conference on Fracture: ECF 15 - advanced fracture mechanics for life and safety assessments: Aug.11 - 13, 2004, KTH Stockholm, Sweden.
- Kamińska, P., Synaszko, P., Ciężak, P., & Dragan, K. (2020). Analysis of the corrosion resistance of aircraft structure joints with double-sided rivets and single-sided rivets. Fatigue of Aircraft Structures, 2020(12), 57–68. https://doi.org/10.2478/fas-2020-0006
- Kebir, T., Benguediab, M., & Imad, A. (2017). A model for fatigue crack growth in the paris regime under the variability of cyclic hardening and elastic properties. Fatigue of Aircraft Structures, 2017(9), 117–135. https://doi.org/10.1515/fas-2017-0010
- Kebir, T., Correia, J. A. F. O., Benguediab, M., & Imad, A. (2021). A FCG model and the graphical user interface under Matlab for predicting fatigue life: Parametric studies. Fatigue of Aircraft Structures, 2021(13), 116–139. https://doi.org/10.2478/fas-2021-0011
- Kocańda, D., & Torzewski, J. (2009). Deterministic approach to predicting the fatigue crack growth in the 2024-T3 aluminum alloy under variable amplitude loading. Fatigue of Aircraft Structures, 2009(1), 102–115. https://doi.org/10.2478/v10164-010-0010-1
- Kudari, S. K., & Sharanaprabhu, C. M. (2017). The effect of anodizing process parameters on the fatigue life of 2024-t-351-aluminium alloy. Fatigue of Aircraft Structures, 2017(9), 109–115. https://doi.org/10.1515/fas-2017-0009
- Low, E. T. (2021). FEM fatigue simulation for an offshore pipeline containing interacting cracks (Final Year Project (FYP)). Nanyang Technological University. https://hdl.handle.net/10356/148866
- Mechab, B., Malika, M., Salem, M., & Boualem, S. (2020). Probabilistic elastic-plastic fracture mechanics analysis of propagation of cracks in pipes under internal pressure. Frattura ed Integrità Strutturale, 14(54), 202–210. https://doi.org/10.3221/igf-esis.54.15
- Mohitpour, M., Murray, A., McManus, M., & Colquhoun, I. (2010). Pipeline Integrity Assurance. ASME Press. https://doi.org/10.1115/1.859568
- Moussouni, A., Benachour, M., & Benachour, N. (2023). Prediction of fatigue cracks using gamma function. Fatigue of Aircraft Structures. https://doi.org/10.2478/fas-2022-0004
- Paris, P. C., & Erdogan, F. (1963). A critical analysis of crack propagation laws. Journal of Basic Engineering, 85, 528–533.
- Soares, E., Bruère, V. M., Afonso, S. M. B., Willmersdorf, R. B., Lyra, P. R. M., & Bouchonneau, N. (2019). Structural integrity analysis of pipelines with interacting corrosion defects by multiphysics modeling. Engineering Failure Analysis, 97, 91–102. https://doi.org/10.1016/j.engfailanal.2019.01.009
- Sun, J., & Cheng, Y. F. (2019). Modelling of mechano-electrochemical interaction of multiple longitudinally aligned corrosion defects on oil/gas pipelines. Engineering Structures, 190, 9–19. https://doi.org/10.1016/j.engstruct.2019.04.010
- Weertman, J. (1973). Theory of fatigue crack growth based on a BCS Crack theory with work hardening. International Journal of Fracture, 9, 125–131. https://doi.org/10.1007/BF00041854
- Witek, L. (2011). Experimental and numerical crack initiation analysis of the compressor blades working in resonance conditions. Fatigue of Aircraft Structures, 2011(3), 134–153. https://doi.org/10.2478/v10164-010-0045-3
- Zarea, M., Piazza, M., Vignal, G., Jones, C., Rau, J., & Wang, R. (2013). Review of R&D in support of mechanical damage threat management in onshore transmission pipeline operations. Proceedings of the 2012 9th International Pipeline Conference. Volume 2: Pipeline Integrity Management. Calgary, Alberta, Canada. September 24–28, 2012. ASME, 569–582.
- Zhang, C., Sun, X., Li, Y., Zhang, X., Zhang, X., Yang, X., & Li, F. (2018). Hydraulic characteristics of transporting a piped carriage in a horizontal pipe based on the bidirectional fluid-structure interaction. Mathematical Problems in Engineering, 2018, 1–27. https://doi.org/10.1155/2018/8317843
- Zhang, Y., Xiao, Z., & Luo, J. (2018). Fatigue crack growth investigation on offshore pipelines with three-dimensional interacting cracks. Geoscience Frontiers, 9(6), 1689–1697. https://doi.org/10.1016/j.gsf.2017.09.011