Bachmatiuk, A. (2008). Badania nad technologią otrzymywania i właściwościami nanorurek węglowych [Unpublished doctoral dissertation]. Politechnika Szczecińska, Wydział technologii i Inżynierii Chemicznej.
Bakar Sulong, A., Muhamad, N., Sahari, J., Ramli, R., Md Deros, B., & Park, J. (2009). Electrical Conductivity Behaviour of Chemical Functionalized MWCNTs Epoxy Nanocomposites. European Journal of Scientific Research, 29(1), 13–21.
Barros, E. B., Jorio, A., Samsonidze, G. G., Capaz, R. B., Souza Filho, A. G., Mendes Filho, J., Dresselhaus, G., & Dresselhaus, M. S. (2006). Review on the symmetry-related properties of carbon nanotubes. Physics Reports, 431(6), 261–302.
Baughman, R. H., Shacklette, J. M., Zakhidov, A. A., & Stafström, S. (1998). Negative Poisson’s ratios as a common feature of cubic metals. Nature, 392(6674), 362–365.
Borowiak-Palen, E., Pichler, T., Liu, X., Knupfer, M., Graff, A., Jost, O., Pompe, W., Kalenczuk, R. J., & Fink, J. (2002). Reduced diameter distribution of single-wall carbon nanotubes by selective oxidation. Chemical Physics Letters, 363(5-6), 567–572.
Cardona-Uribe, N., Betancur, M., & Martínez, J. D. (2021). Towards the chemical upgrading of the recovered carbon black derived from pyrolysis of end-of-life tires. Sustainable Materials and Technologies, 28, Article e00287.
Ciecierska, E., Boczkowska, A., Chabera, P., Wisniewski, T., & Kubiś, M. (2015). Epoxy composites with carbon fillers. Structure and properties Kompozyty żywicy epoksydowej z napełniaczami węglowymi. Struktura i właściwości. Przemysł Chemiczny, 1(11), 159–163.
Domun, N., Hadavinia, H., Zhang, T., Sainsbury, T., Liaghat, G. H., & Vahid, S. (2015). Improving the fracture toughness and the strength of epoxy using nanomaterials – a review of the current status. Nanoscale, 7(23), 10294–10329.
Dydek, K., Boczkowska, A., Kozera, R., Durałek, P., Sarniak, Ł., Wilk, M., & Login, W. (2021). Effect of SWCNT-Tuball Paper on the Lightning Strike Protection of CFRPs and Their Selected Mechanical Properties. Materials, 14(11), 3140.
Frigione, M., Naddeo, C., & Acierno, D. (2001). Cold-Curing Epoxy Resins: Aging and Environmental Effects. I - Thermal Properties. Journal of Polymer Engineering, 21(1).
Gardea, F., & Lagoudas, D. C. (2014). Characterization of electrical and thermal properties of carbon nanotube/epoxy composites. Composites Part B: Engineering, 56, 611–620.
Geipel, T., Meinert, M., Kraft, A., & Eitner, U. (2018). Optimization of Electrically Conductive Adhesive Bonds in Photovoltaic Modules. IEEE Journal of Photovoltaics, 8(4), 1074–1081.
Gogurla, N., Roy, B., Park, J.-Y., & Kim, S. (2019). Skin-contact actuated singleelectrode protein triboelectric nanogenerator and strain sensor for biomechanical energy harvesting and motion sensing. Nano Energy, 62, 674–681.
Gojny, F. H., Wichmann, M. H. G., Köpke, U., Fiedler, B., & Schulte, K. (2004). Carbon nanotube-reinforced epoxy-composites: Enhanced stiffness and fracture toughness at low nanotube content. Composites Science and Technology, 64(15), 2363–2371.
Hagita, K., & Morita, H. (2019). Effects of polymer/filler interactions on glass transition temperatures of filler-filled polymer nanocomposites. Polymer, 178, 121615.
Hall, L. J., Coluci, V. R., Galvao, D. S., Kozlov, M. E., Zhang, M., Dantas, S. O., & Baughman, R. H. (2008). Sign Change of Poisson’s Ratio for Carbon Nanotube Sheets. Science, 320(5875), 504–507.
Krainoi, A., Johns, J., Kalkornsurapranee, E., & Nakaramontri, Y. (2021). Carbon Nanotubes Reinforced Natural Rubber Composites. In P. Ghosh, K. Datta, & A. Rushi (Eds.), Carbon Nanotubes - Redefining the World of Electronics. IntechOpen.
Kumar, V., Alam, M. N., Manikkavel, A., Song, M., Lee, D.-J., & Park, S.-S. (2021). Silicone Rubber Composites Reinforced by Carbon Nanofillers and Their Hybrids for Various Applications: A Review. Polymers, 13(14), 2322.
Kumar, V., Kumar, A., Han, S. S., & Park, S.-S. (2020). RTV silicone rubber composites reinforced with carbon nanotubes, titanium-di-oxide and their hybrid: Mechanical and piezoelectric actuation performance. Nano Materials Science.
Kumar, V., Kumar, A., Song, M., Lee, D.-J., Han, S.-S., & Park, S.-S. (2021). Properties of Silicone Rubber-Based Composites Reinforced with Few-Layer Graphene and Iron Oxide or Titanium Dioxide. Polymers, 13(10), 1550.
Kumar, V., & Lee, D.-J. (2016). Studies of nanocomposites based on carbon nanomaterials and RTV silicone rubber. Journal of Applied Polymer Science, 134(4).
Kumar, V., Lee, G., Monika, Choi, J., & Lee, D.-J. (2020). Studies on composites based on HTV and RTV silicone rubber and carbon nanotubes for sensors and actuators. Polymer, 190, 122221.
Latko-Durałek, P., Kozera, R., Macutkevič, J., Dydek, K., & Boczkowska, A. (2020). Relationship between Viscosity, Microstructure and Electrical Conductivity in Copolyamide Hot Melt Adhesives Containing Carbon Nanotubes. Materials, 13(20), 4469.
Li, C., Chen, X., & Zhimin, D. (2004). A New Relationship of Rock Compressibility with Porosity. Paper presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition, Perth, Australia, October 2004.
Limpert, E., & Stahel, W. A. (2011). Problems with Using the Normal Distribution – and Ways to Improve Quality and Efficiency of Data Analysis. PLoS ONE, 6(7), Article e21403.
Liu, Q., Lomov, S. V., & Gorbatikh, L. (2020). Enhancing Strength and Toughness of Hierarchical Composites through Optimization of Position and Orientation of Nanotubes: A Computational Study. Journal of Composites Science, 4(2), 34.
Liu, Q., Shi, W., Chen, Z., Li, K., Liu, H., & Li, S. (2019). Rubber accelerated ageing life prediction by Peck model considering initial hardness influence. Polymer Testing, 80, 106132.
Lopes, P., Moura, D., Freitas, D., Proença, M., Figueiredo, R., Alves, H., & Paiva, M. (2019). Advanced electrically conductive adhesives for high complexity PCB assembly. AIP Conf. Proc. 22 January 2019, 2055(1), 090009.
Mucha, M., Krzyzak, A., Kosicka, E., Coy, E., Kościński, M., Sterzyński, T., & Sałaciński, M. (2020). Effect of MWCNTs on Wear Behavior of Epoxy Resin for Aircraft Applications. Materials, 13(12), 2696.
Nicolau-Kuklińska, A., Latko-Durałek, P., Nakonieczna, P., Dydek, K., Boczkowska, A., & Grygorczuk, J. (2017). A new electroactive polymer based on carbon nanotubes and carbon grease as compliant electrodes for electroactive actuators. Journal of Intelligent Material Systems and Structures, 29(7), 1520–1530.
Nobile, M. R. (2011). Rheology of polymer–carbon nanotube composites melts. In T. McNally & P. Pötschke (Eds.), Polymer–Carbon Nanotube Composites (pp. 428–481). Woodhead Publishing.
Rodríguez-Prieto, A., Primera, E., Frigione, M., & Camacho, A. M. (2021). Reliability Prediction of Acrylonitrile O-Ring for Nuclear Power Applications Based on Shore Hardness Measurements. Polymers, 13(6), 943.
Rosca, I. D., & Hoa, S. V. (2009). Highly conductive multiwall carbon nanotube and epoxy composites produced by three-roll milling. Carbon, 47(8), 1958–1968.
Sajith, S. (2019). Investigation on effect of chemical composition of bio-fillers on filler/matrix interaction and properties of particle reinforced composites using FTIR. Composites Part B: Engineering, 166, 21–30.
Sivaselvi, K., Varma, V. S., Harikumar, A., Jayaprakash, A., Sankar, S., Krishna, C. Y., & Gopal, K. (2021). Improving the mechanical properties of natural rubber composite with carbon black (N220) as filler. Materials Today: Proceedings, 42, 921–925.
Smoleń, P., Czujko, T., Komorek, Z., Grochala, D., Rutkowska, A., & Osiewicz-Powęzka, M. (2021). Mechanical and Electrical Properties of Epoxy Composites Modified by Functionalized Multiwalled Carbon Nanotubes. Materials, 14(12), 3325.
Terranova, M. L., Sessa, V., & Rossi, M. (2006). The World of Carbon Nanotubes: An Overview of CVD Growth Methodologies. Chemical Vapor Deposition, 12(6), 315–325.
Yadav, S. G., Guntur, N. P. R., N., R., & Gopalan, S. (2021). Effect of titanium carbide powder as a filler on the mechanical properties of silicone rubber. Materials Today: Proceedings, 46, 665–671.
Yeganeh-Haeri, A., Weidner, D. J., & Parise, J. B. (1992). Elasticity of agr-Cristobalite: A Silicon Dioxide with a Negative Poisson’s Ratio. Science, 257(5070), 650–652.
Zhang, X., Cai, L., He, A., Ma, H., Li, Y., Hu, Y., Zhang, X., & Liu, L. (2021). Facile strategies for green tire tread with enhanced filler-matrix interfacial interactions and dynamic mechanical properties. Composites Science and Technology, 203, 108601.