Brown, W. G. (1981). Determination of damping values for turbine blades. Proceedings of the Design Engineering Technical Conference, Article ASME Paper 81-DET-131.
Csaba, G. (1998). Modelling microslip friction damping and its influence on turbine blade vibrations [PhD dissertation, Linköping University]. http://urn.kb.se/resolve? urn=urn:nbn:se:liu:diva-181151
Csaba, G. & Andersson, M. (1997). Optimization of friction damper weight, simulation and experiments, presented at the ASME TurboExpo 97, Orlando, FL, 97-GT-115, 2-5 June, 1997.
Hanson, M. P., Mayer, A. J., & Manson, S. S. (1953). A method of evaluating looseblade mounting as a means of suppressing turbine and compressor blade vibration. Proceedings SESA, 10(2).
Jachimowicz, J., Kozłowski, P., Moneta, G., Szymczyk, E., & Kaniowski, J. (2011). Zjawisko frettingu w konstrukcjach lotniczych. Prace Instytutu Lotnictwa, 206, 36–58.
Jones, D. I. G., Nashif, A. D., & Stargardter, H. (1975). Vibrating beam dampers for reducing vibrations in gas turbine blades. Transactions of the ASME, Journal of Engineering for Power, 111–116.
Kielb, J. J., & Abhari, R. S. (2001). Experimental study of aerodynamic and structural damping in a full-scale rotating turbine. ASME Turbo Expo 2001, Article 2001-GT-0262. https://doi.org/10.1115/2001-GT-0262.
Lampert, P., Szymaniak, M., & Rzadkowski, R. (2004). Unsteady load of partial admission control stage rotor of a large power steam turbine. Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air, Volume 5: Turbo Expo 2004, Parts A and B, Article ASME Paper GT2004-53886. https://doi.org/10.1115/GT2004-53886
Moneta, G., Fedasz, M., Szmidt, M., Cieslak, M., & Krzymien, W. (2022). Advantages of additive manufacturing technology in damping improvement of turbine blading. Proceedings of the 2022 International Additive Manufacturing Conference. 2022 International Additive Manufacturing Conference, Article IAM2022-96752. https://doi.org/10.1115/IAM2022-96752.
Moneta, G., Fedasz, M., Szmidt, M., Cieslak, S., & Krzymien, W. (2022). Increasing of damping in the turbine blade through multi-functional design and advantages of additive manufacturing technology. Proceedings of the ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, Volume 8A: Structures and Dynamics — Aerodynamics Excitation and Damping; Bearing and Seal Dynamics, Article GT2022-83889. https://doi.org/10.1115/GT2022-83889.
Moneta, G., Jachimowicz, J., Pietrzakowski, M., Doligajski, A., & Szwedowicz, J. (2021). Insight into vibration sources in turbines. Fatigue of Aircraft Structures, 2021(13), 40–53. https://doi.org/10.2478/fas-2021-0005.
Pastorius, W. J. (1969). Damping factors in turbine blade vibration (Publication No. 6580) [Electronic Theses and Dissertations, University of Windsor]. https://scholar.uwindsor.ca/etd/6580
Salzmann, D.J.C. & van der Tempel, J. (2005). Aerodynamic damping in the design of support structures for offshore wind turbines. Offshore Wind Energy Conference, Copenhagen, Dennmark, 26-28 October, 2005.
Srinivasan, A. V. (1997). Flutter and resonant vibration characteristics of engine blades: An IGTI scholar paper. Proceedings of the ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition, Volume 4: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagn, Article 97-GT-533. https://doi.org/10.1115/97-GT-533.
Szwedowicz, J., Secall-Wimmel, T., & Dünck-Kerst, P. (2008). Damping performance of axial turbine stages with loosely assembled friction bolts: The nonlinear dynamic assessment. Transactions of the ASME, Journal of Engineering for Gas Turbines and Power, 130, Article 032505.
Wdowiński, W., Szymczyk, E., Jachimowicz, J., & Moneta, G. (2017). Design and strength analysis of curved-root concept for compressor rotor blade in gas turbine. Fatigue of Aircraft Structures, 2017(9), 137–155. https://doi.org/10.1515/fas-2017-0011.