Alsmadi, Z. Y., Alomari, A., Kumar, N., & Murty, K. L. (2020). Effect of hold time on high temperature creep-fatigue behavior of Fe–25Ni–20Cr (wt.%) austenitic stainless steel (Alloy 709). Materials Science and Engineering A, 771(709), 138591. doi:10.1016/j.msea.2019.138591.
El May, M., Saintier, N., Devos, O., & Rozinoer, A. (2015). Effect of corrosion on the low-cycle fatigue strength of steels used in frequent start-up power generation steam turbine. Procedia Engineering, 133, 528–534. doi:10.1016/j.proeng.2015.12.626.
Golaski, G. (2009). Microstructure and mechanical properties of G17CrMoV5—10 cast steel after regenerative heat treatment. Operations, Applications and Components, 7, 427–434. doi: 10.1115/pvp2009-77710.
Holdsworth, S. R. (2001). Creep-fatigue properties of high temperature. Creep-fatigue properties of high temperature turbine steels. Materials at High Temperatures, 18(4), 261–265.
Millien, K. (2020). Prototype steam turbine for solar power production. Advances in Materials Science and Engineering, 2020(Iv). doi: 10.1155/2020/4589281.
Swindeman, R. W., & Ren, W. (2018). Fatigue and fracture resistance of heat-resistant (Cr-Mo) ferritic steels. Fatigue and Fracture, 19, 704–711. doi:10.31399/asm.hb.v19.a0002402.
Takahashi, Y. (2008). Study on creep-fatigue evaluation procedures for high-chromium steels-Part I: Test results and life prediction based on measured stress relaxation. International Journal of Pressure Vessels and Piping, 85(6), 406–422. doi:10.1016/j.ijpvp.2007.11.008.