Have a personal or library account? Click to login
A Comparative Analysis of the Infrapatellar Fat Pad and Subcutaneous Adipose Tissue as Providers of Mesenchymal Stem Cells with Chondrogenic Potential: Quantitative Assessment through Immunohistochemical Methods Cover

A Comparative Analysis of the Infrapatellar Fat Pad and Subcutaneous Adipose Tissue as Providers of Mesenchymal Stem Cells with Chondrogenic Potential: Quantitative Assessment through Immunohistochemical Methods

Open Access
|Nov 2025

References

  1. Neubauer M, Kuten O, Stotter C, Kramer K, De Luna A, Muellner T, et al. The effect of blood-derived products on the chondrogenic and osteogenic differentiation potential of adipose-derived mesenchymal stem cells originated from three different locations. Stem Cells Int. 2019;2019:1358267. doi:10.1155/2019/1358267.
  2. Darling EM, Athanasiou KA. Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J Orthop Res. 2005;23(2):425–32.
  3. Jayasuriya CT, Chen Q. Potential benefits and limitations of utilizing chondroprogenitors in cell-based cartilage therapy. Connect Tissue Res. 2015; 56(4):265–71.
  4. Maslennikov S, Avramenko Y, Tumanskiy V, Golovakha M. Comparative characteristics of the stem cells’ number in the stromal vascular fraction of infrapatellar fat pad and subcutaneous fat tissue. J ISAKOS. 2024 Aug;9(4):615–619. doi: 10.1016/j.jisako.2024.05.011.
  5. Tanimoto K, Matsumoto T, Nagaoka Y, et al. Phenotypic and functional properties of dedifferentiated fat cells derived from infrapatellar fat pad. Regen Ther. 2022;20:35–42. doi: 10.1016/j.reth.2022.03.002.
  6. Labarre KW, Zimmermann G. Infiltration of the Hoffa’s fat pad with stromal vascular fraction in patients with osteoarthritis of the knee - results after one year of follow-up. BoneKEy Rep. 2022;11:45–52. doi: 10.1038/s41413-022-00123-4.
  7. Song SS, Xia GH, Yin F, Tang Y. Comparison of human subcutaneous and infrapatellar fat pad derived stem cells in the treatment of osteoarthritis in rats. Fudan Univ J Med Sci. 2022;49(3):345–52.
  8. Huri PY, Hamsici S, Ergene E, Huri G, Doral MN. Infrapatellar fat pad-derived stem cell-based regenerative strategies in orthopedic surgery. Knee Surg Relat Res. 2018 Sep 1;30(3):179–86.
  9. Greif DN, Kouroupis D, Murdock CJ, Griswold AJ, Kaplan LD, Best TM, et al. Infrapatellar fat pad/synovium complex in early-stage knee osteoarthritis: potential new target and source of therapeutic mesenchymal stem/stromal cells. Front Bioeng Biotechnol. 2020;8:308. doi: 10.3389/fbioe.2020.00308.
  10. Foo, Jhi Biau, Looi, Qi Hao, Chong, Pan Pan, Hassan, Nur Hidayah, Yeo, Genieve Ee Chia, Ng, Chiew Yong, Koh, Benson, How, Chee Wun, Lee, Sau Har, Law, Jia Xian, Comparing the Therapeutic Potential of Stem Cells and their Secretory Products in Regenerative Medicine, Stem Cells International, 2021, 2616807, 30 pages, 2021. https://doi.org/10.1155/2021/2616807
  11. Du X, Cai L, Xie J, Zhou X. The role of TGF-beta3 in cartilage development and osteoarthritis. Bone Res. 2023 Jan 2;11(1):2. doi: 10.1038/s41413-022-00239-4.
  12. Rajagopal K, Arjunan P, Marepally S, Madhuri V. Controlled Differentiation of Mesenchymal Stem Cells into Hyaline Cartilage in miR-140-Activated Collagen Hydrogel. CARTILAGE. 2021;13(2_suppl):571S–581S. doi:10.1177/19476035211047627
  13. Neri S, Guidotti S, Lilli NL, Cattini L, Mariani E. Infrapatellar fat pad-derived mesenchymal stromal cells from osteoarthritis patients: in vitro genetic stability and replicative senescence. J Orthop Res. 2017;35(5):1029–37. doi: 10.1002/jor.23349.
  14. Stanco D, de Girolamo L, Sansone V, Moretti M. Donor-matched mesenchymal stem cells from knee infrapatellar and subcutaneous adipose tissue of osteoarthritic donors display differential chondrogenic and osteogenic commitment. Eur Cells Mater. 2014;27:298–311.
  15. Liu Y, Buckley CT, Almeida HV, Mulhall KJ, Kelly DJ. Infrapatellar fat pad-derived stem cells maintain their chondrogenic capacity in disease and can be used to engineer cartilaginous grafts of clinically relevant dimensions. Tissue Eng Part A. 2014;20(21-22):3050–62.
  16. Mennan C, Garcia J, McCarthy H, Owen S, Perry J, Wright K, et al. Human articular chondrocytes retain their phenotype in sustained hypoxia while normoxia promotes their immunomodulatory potential. Cartilage. 2019 Oct;10(4):467–79.
  17. Boeuf S, Richter W. Chondrogenesis of mesenchymal stem cells: role of tissue source and inducing factors. Stem Cell Res Ther. 2010 Oct 13;1(4):31. doi: 10.1186/scrt31.
  18. Pretzel D, Linss S, Rochler S, Endres M, Kaps C, Alsalameh S, et al. Relative percentage and zonal distribution of mesenchymal progenitor cells in human osteoarthritic and normal cartilage. Arthritis Res Ther. 2011 Apr 15;13(2):R64. doi: 10.1186/ar3322.
  19. Pak J, Lee JH, Kartolo WA, Lee SH. Cartilage regeneration in human with adipose tissue-derived stem cells: current status in clinical implications. BioMed Res Int. 2016;2016:4702674. doi: 10.1155/2016/4702674.
  20. Pan Q, Yu Y, Chen Q, Li C, Wu H, Wan Y, Ma J, Sun F. Sox9, a key transcription factor of bone morphogenetic protein-2-induced chondrogenesis, is activated through BMP pathway and a CCAAT box in the proximal promoter. J Cell Physiol. 2008 Oct;217(1):228–41. doi: 10.1002/jcp.21496.
  21. Zehentner BK, Dony C, Burtscher H. The transcription factor Sox9 is involved in BMP-2 signaling. J Bone Miner Res. 1999 Oct;14(10):1734–41. doi: 10.1359/jbmr.1999.14.10.1734. PMID: 10491221.
DOI: https://doi.org/10.2478/eabr-2025-0013 | Journal eISSN: 2956-2090 | Journal ISSN: 2956-0454
Language: English
Submitted on: May 7, 2025
Accepted on: May 7, 2025
Published on: Nov 5, 2025
Published by: University of Kragujevac, Faculty of Medical Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Maslennikov Serhii, Chucha Oleh, Valeriy Tumanskiy, Maksym Golovakha, published by University of Kragujevac, Faculty of Medical Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

AHEAD OF PRINT