Have a personal or library account? Click to login
Volatility Modelling and VaR: The Case of Bitcoin, Ether and Ripple Cover

Volatility Modelling and VaR: The Case of Bitcoin, Ether and Ripple

Open Access
|Oct 2020

References

  1. Ardia, D., Bluteau, K. and Rüede, M. (2018). Regime changes in Bitcoin GARCH volatility dynamics. Finance Research Letters, 29(2019), 266–271.
  2. Aussenegg, W., Miazhynskaia, T. (2006). Uncertainty in value-at-risk estimates under parametric and non-parametric modelling. Financial Markets and Portfolio Management, 20(3), 243–264.
  3. Baur, D. G., Hong, K., Lee, A. D. (2018). Bitcoin: Medium of exchange or speculative assets? Journal of International Financial Markets, Institutions and Money, 54, 177–189.
  4. Blau, B. M. (2018). Price dynamics and speculative trading in Bitcoin. Research in International Business and Finance, 43, 15–21.
  5. Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31, 307–327.
  6. Cipra, T. (2013). Finanční ekonometrie (Financial Econometrics). Prague: Ekopress.
  7. Charles, A., Darné, O. (2005). Outliers and GARCH models in financial data. Economics Letters, 86(3), 347–352.
  8. Chu, J., Chan, S., Nadarajah, S., Osterrieder, J. (2017). GARCH Modelling of Cryptocurrencies. Journal of Risk and Financial Management, 10(4), 17.
  9. Conrad, C., Custovic, A., Ghysels, E. (2018). Long- and Short-Term Cryptocurrency Volatility Components: A GARCH-MIDAS Analysis. Journal of Risk and Financial Management, 11(2), 23.
  10. Dyhrberg, A. H. (2016). Bitcoin, gold and the dollar – A GARCH volatility analysis. Finance Research Letters, 16, 85–92.
  11. Engle, R. F., Bollerslev, T. (1986) Modelling the persistence of conditional variances. Econometric Reviews, 5(1), 1–50.
  12. Katsiampa, P. (2017). Volatility estimation for Bitcoin: A comparison of GARCH models. Economics Letters, 158(C), 3–6.
  13. Klein, T., Pham Thu, H., Walther, T. (2018). Bitcoin is not the New Gold – A comparison of volatility, correlation, and portfolio performance. International Review of Financial Analysis, 59(C), 105–116.
  14. Li, X., Wang, C. A. (2017). The technology and economic determinants of cryptocurrency exchange rates: The case of Bitcoin. Decision Support Systems, 95, 49–60.
  15. Mandelbrot, B. (1963). The Variation of Certain Speculative Prices. The Journal of Business, 36(4), 394–419.
  16. Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Retrieved September 12, 2019, from https://bitcoin.org/bitcoin.pdf.
  17. Stavroyiannis, S. (2018). Value-at-risk and related measures for the Bitcoin. The Journal of Risk Finance, 19(2), 127–136.
  18. Symitsi, E., Chalvatzis, K. J. (2018). Return, volatility and shock spillovers of Bitcoin with energy and technology companies. Economics Letters, 170, 127–130.
  19. Urquhart, A. (2016). The inefficiency of Bitcoin. Economics Letters, 148, 80–82.
  20. Yang, Z. (2012). Geometric brownian motion model in financial market. Graduation Work, Princeton, USA.
  21. Yi, S., Xu, Z. and Wang, G-J. (2018). Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency? International Review of Financial Analysis, 60, 98–114.
DOI: https://doi.org/10.2478/danb-2020-0015 | Journal eISSN: 1804-8285 | Journal ISSN: 1804-6746
Language: English
Page range: 253 - 269
Published on: Oct 17, 2020
Published by: European Association Comenius - EACO
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Jakub Ječmínek, Gabriela Kukalová, Lukáš Moravec, published by European Association Comenius - EACO
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.