References
- Counts, M.E., F.S. Hsu, and F.J. Tewes: Development of a Commercial Cigarette “Market Map” Comparison Methodology for Evaluating New or Non-Conventional Cigarettes; Regul. Toxicol. Pharmacol. 46 (2006) 225–242. DOI: 10.1016/j.yrtph.2006.07.002
- Jain, V., A. Alcheva, D. Huang, R. Caruso, A. Jain, M. Lay, R. O’Connor, and I. Stepanov: Comprehensive Chemical Characterization of Natural American Spirit Cigarettes; Tob. Regul. Sci. 5 (2019) 381–399. DOI: 10.18001/trs.5.4.8
- Roemer, E., R. Dempsey, and M.K. Schorp: Toxicological Assessment of Kretek Cigarettes: Part 1: Background, Assessment Approach, and Summary of Findings; Regul. Toxicol. Pharmacol. 70 Suppl 1 (2014) S2–14. DOI: 10.1016/j.yrtph.2014.11.015
- Morton, M.J. and S.W. Laffoon: Cigarette Smoke Chemistry Market Maps under Massachusetts Department of Public Health Smoking Conditions; Regul. Toxicol. Pharmacol. 51 (2008) 1–30. DOI: 10.1016/j.yrtph.2008.03.001
- Jablonski, J.J., J.H. Maines, A.G. Cheetham, and I.G. Gillman: Comparative Levels of Carbonyl Delivery Between Mass-Market Cigars and Cigarettes; Regul. Toxicol. Pharmacol. 108 (2019) DOI: 10.1016/j.yrtph.2019.104453
- Chepiga, T.A., M.J. Morton, P.A. Murphy, J.T. Avalos, B.R. Bombick, D.J. Doolittle, M.F. Borgerding, and J.E. Swauger: A Comparison of the Mainstream Smoke Chemistry and Mutagenicity of a Representative Sample of the US Cigarette Market with Two Kentucky Reference Cigarettes (K1r4f and K1r5f); Food Chem. Toxicol. 38 (2000) 949–962. DOI: 10.1016/s0278-6915(00)00086-7
- Counts, M.E., F.S. Hsu, S.W. Laffoon, R.W. Dwyer, and R.H. Cox: Mainstream Smoke Constituent Yields and Predicting Relationships from a Worldwide Market Sample of Cigarette Brands: ISO Smoking Conditions; Regul. Toxicol. Pharmacol. 39 (2004) 111–134. DOI: 10.1016/j.yrtph.2003.12.005
- Eldridge, A., T.R. Betson, M.V. Gama, and K. McAdam: Variation in Tobacco and Mainstream Smoke Toxicant Yields from Selected Commercial Cigarette Products; Regul. Toxicol. Pharmacol. 71 (2015) 409–427. DOI: 10.1016/j.yrtph.2015.01.006
- Carmines, E. and G. Gillman: Comparison of the Yield of Very Low Nicotine Content Cigarettes to the Top 100 United States Brand Styles; Beitr. Tabakforsch. Int. 28 (2019) 253–266. DOI: 10.2478/cttr-2019-0005
- Piadé, J.-J., S. Wajrock, G. Jaccard, and G. Janeke: Formation of Mainstream Cigarette Smoke Constituents Prioritized by the World Health Organization - Yield Patterns Observed in Market Surveys, Clustering and Inverse Correlations; Food Chem. Toxicol. 55 (2013) 329–347. DOI: 10.1016/j.fct.2013.01.016
- Pazo, D.Y., F. Moliere, M.M. Sampson, C.M. Reese, K.A. Agnew-Heard, M.J. Walters, M.R. Holman, B.C. Blount, C.H. Watson, and D.M. Chambers: Mainstream Smoke Levels of Volatile Organic Compounds in 50 US Domestic Cigarette Brands Smoked with the ISO and Canadian Intense Protocols; Nicotine Tob. Res. 18 (2016) 1886–1894. DOI: 10.1093/ntr/ntw118
- Edwards, S.H., L.M. Rossiter, K.M. Taylor, M.R. Holman, L. Zhang, Y.S. Ding, and C.H. Watson: Tobacco-Specific Nitrosamines in the Tobacco and Mainstream Smoke of U.S. Commercial Cigarettes; Chem. Res. Toxicol. 30 (2017) 540–551. DOI: 10.1021/acs.chemrestox.6b00268
- Vu, A.T., K.M. Taylor, M.R. Holman, Y.S. Ding, B. Hearn, and C.H. Watson: Polycyclic Aromatic Hydrocarbons in the Mainstream Smoke of Popular U.S. Cigarettes; Chem. Res. Toxicol. 28 (2015) 1616–1626. DOI: 10.1021/acs.chemrestox.5b00190
- Oldham, M.J., D.J. DeSoi, L.T. Rimmer, K.A. Wagner, and M.J. Morton: Insights from Analysis for Harmful and Potentially Harmful Constituents (HPHCs) in Tobacco Products; Regul. Toxicol. Pharmacol. 70 (2014) 138–148. DOI: 10.1016/j.yrtph.2014.06.017
- Tobacco Journal International: Reference Products Used in Tobacco and Smoke Analyses; Tob. J. Int. 2 (2013) 150–154. Available at:
https://www.coresta.org/sites/default/files/pages/tji0213-p150-154-refproducts.pdf - Roemer, E., H. Schramke, H. Weiler, A. Buettner, S. Kausche, S. Weber, A. Berges, M. Stueber, M. Muench, E. Trelles-Sticken, J. Pype, K. Kohlgrueber, H. Voelkel, and S. Wittke: Mainstream Smoke Chemistry and in Vitro and in Vivo Toxicity of the Reference Cigarettes 3R4F and 2R4F; Beitr. Tabakforsch. Int. 25 (2012) 316–335. DOI: 10.2478/cttr-2013-0912
- Wagner, K.A., R. Higby, and K. Stutt: Puff-by-Puff Analysis of Selected Mainstream Smoke Constituents in The Kentucky Reference 2R4F Cigarette; Beitr. Tabakforsch. Int. 21 (2005) 273–279. DOI: 10.2478/cttr-2013-0793
- Benowitz, N.L. and M.L. Goniewicz: The Regulatory Challenge of Electronic Cigarettes; JAMA 310 (2013) 685–686. DOI: 10.1001/jama.2013.109501.
- Reilly, S.M., T. Cheng, and J. DuMond: Method Validation Approaches for Analysis of Constituents in ENDS; Tob. Regul. Sci. 6 (2020) 242–265. DOI: 10.18001/trs.6.4.3
- Williams, M. and P. Talbot: Design Features in Multiple Generations of Electronic Cigarette Atomizers; Int. J. Environ. Res. Public Health 16 (2019) 2904. DOI: 10.3390/ijerph16162904
- Cunningham, A., K. McAdam, J. Thissen, and H. Digard: The Evolving E-Cigarette: Comparative Chemical Analyses of E-Cigarette Vapor and Cigarette Smoke; Front. Toxicol. 2 (2020) DOI: 10.3389/ftox.2020.586674
- Belushkin, M., D.T. Djoko, M. Esposito, A. Korneliou, C. Jeannet, M. Lazzerini, and G. Jaccard: Selected Harmful and Potentially Harmful Constituents Levels in Commercial E-Cigarettes; Chem. Res. Toxicol. 33 (2020) 657–668. DOI: 10.1021/acs.chemrestox.9b00470
- Uchiyama, S., K. Ohta, Y. Inaba, and N. Kunugita: Determination of Carbonyl Compounds Generated from the E-Cigarette Using Coupled Silica Cartridges Impregnated with Hydroquinone and 2,4-Dinitrophenylhydrazine, Followed by High-Performance Liquid Chromatography; Anal. Sci. 29 (2013) 1219–1222. DOI: 10.2116/analsci.29.1219
- Goniewicz, M.L., J. Knysak, M. Gawron, L. Kosmider, A. Sobczak, J. Kurek, A. Prokopowicz, M. Jablonska-Czapla, C. Rosik-Dulewska, C. Havel, P. Jacob III, and N. Benowitz: Levels of Selected Carcinogens and Toxicants in Vapour from Electronic Cigarettes; Tob. Control 23 (2014) 133–139. DOI: 10.1136/tobaccocontrol-2012-050859
- Laugesen, M.: Nicotine and Toxicant Yield Ratings of Electronic Cigarette Brands in New Zealand; N. Z. Med. J. 128 (2015) 77–82. PMID: 25820506
- Uchiyama, S., Y. Senoo, H. Hayashida, Y. Inaba, H. Nakagome, and N. Kunugita: Determination of Chemical Compounds Generated from Second-Generation E-Cigarettes Using a Sorbent Cartridge Followed by a Two-Step Elution Method; Anal. Sci. 32 (2016) 549–555. DOI: 10.2116/analsci.32.549
- El-Hellani, A., R. Salman, R. El-Hage, S. Talih, N. Malek, R. Baalbaki, N. Karaoghlanian, R. Nakkash, A. Shihadeh, and N.A. Saliba: Nicotine and Carbonyl Emissions from Popular Electronic Cigarette Products: Correlation to Liquid Composition and Design Characteristics; Nicotine Tob. Res. 20 (2018) 215–223. DOI: 10.1093/ntr/ntw280
- Klager, S., J. Vallarino, P. MacNaughton, D.C. Christiani, Q. Lu, and J.G. Allen: Flavoring Chemicals and Aldehydes in E-Cigarette Emissions; Environ. Sci. Technol. 51 (2017) 10806–10813. DOI: 10.1021/acs.est.7b02205
- Williams, M., K. Bozhilov, S. Ghai, and P. Talbot: Elements Including Metals in the Atomizer and Aerosol of Disposable Electronic Cigarettes and Electronic Hookahs; PLoS One 12 (2017) e0175430. DOI: 10.1371/journal.pone.0175430
- Olmedo, P., W. Goessler, S. Tanda, M. Grau-Perez, S. Jarmul, A. Aherrera, R. Chen, M. Hilpert, J.E. Cohen, A. Navas-Acien, and A.M. Rule: Metal Concentrations in E-Cigarette Liquid and Aerosol Samples: The Contribution of Metallic Coils; Environ. Health Perspect. 126 (2018) 027010. DOI: 10.1289/EHP2175
- Zhao, D., A. Navas-Acien, V. Ilievski, V. Slavkovich, P. Olmedo, B. Adria-Mora, A. Domingo-Relloso, A. Aherrera, N.J. Kleiman, A.M. Rule, and M. Hilpert: Metal Concentrations in Electronic Cigarette Aerosol: Effect of Open-System and Closed-System Devices and Power Settings; Environ. Res. 174 (2019) 125–134. DOI: 10.1016/j.envres.2019.04.003
- Halstead, M., N. Gray, N. Gonzalez-Jimenez, M. Fresquez, L. Valentin-Blasini, C. Watson, and R.S. Pappas: Analysis of Toxic Metals in Electronic Cigarette Aerosols Using a Novel Trap Design; J. Anal. Toxicol. 44 (2020) 149–155. DOI: 10.1093/jat/bkz078
- Gray, N., M. Halstead, L. Valentin-Blasini, C. Watson, and R.S. Pappas: Toxic Metals in Liquid and Aerosol from Pod-Type Electronic Cigarettes; J. Anal. Toxicol. 46 (2022) 69–75. DOI: 10.1093/jat/bkaa185
- Aherrera, A., J.J. Lin, R. Chen, M. Tehrani, A. Schultze, A. Borole, S. Tanda, W. Goessler, and A.M. Rule: Metal Concentrations in E-Cigarette Aerosol Samples: A Comparison by Device Type and Flavor; Environ. Health Perspect. 131 (2023) 127004. DOI: 10.1289/ehp11921
- Chen, X., P.C. Bailey, C. Yang, B. Hiraki, M.J. Oldham, and I.G. Gillman: Targeted Characterization of the Chemical Composition of JUUL Systems Aerosol and Comparison with 3R4F Reference Cigarettes and IQOS Heat Sticks; Separations 8 (2021) 168. DOI: 10.3390/separations8100168
- Margham, J., K. McAdam, A. Cunningham, A. Porter, S. Fiebelkorn, D. Mariner, H. Digard, and C. Proctor: The Chemical Complexity of E-Cigarette Aerosols Compared with the Smoke from a Tobacco Burning Cigarette; Front. Chem. 9 (2021). DOI: 10.3389/fchem.2021.743060
- Tayyarah, R. and G.A. Long: Comparison of Select Analytes in Aerosol from E-Cigarettes with Smoke from Conventional Cigarettes and with Ambient Air; Regul. Toxicol. Pharmacol. 70 (2014) 704–710. DOI: 10.1016/j.yrtph.2014.10.010.
- Margham, J., K. McAdam, M. Forster, C. Liu, C. Wright, D. Mariner, and C. Proctor: Chemical Composition of Aerosol from an E-Cigarette: A Quantitative Comparison with Cigarette Smoke; Chem. Res. Toxicol. 29 (2016) 1662–1678. DOI: 10.1021/acs.chemrestox.6b00188
- Cook, D.K., G. Lalonde, M.J. Oldham, J. Wang, A. Bates, S. Ullah, C. Sulaiman, K. Carter, C. Jongsma, G. Dull, and G. Gillman: A Practical Framework for Novel Electronic Nicotine Delivery System Evaluation: Chemical and Toxicological Characterization of JUUL2 Aerosol and Comparison with Reference Cigarettes; Toxics 12 (2024) 41. DOI: 10.3390/toxics12010041
- Office of the President of Mexico, Modification to Law on General Taxes on Imports and Exports - Tariff section 3824.90.83, 8453.70.18, and 8453.90.03. 2020, Official Journal of the Federation. Available at:
https://www.dof.gob.mx/nota_detalle.php?codigo=5653845&fecha=31/05/2022#gsc.tab=0 - U.S. Food and Drug Administration (FDA): FDA Finalizes Enforcement Policy on Unauthorized Flavored Cartridge-Based E-Cigarettes that Appeal to Children, Including Fruit and Mint; FDA, Silver Springs, MD, USA, 2020.
- Harvanko, A.M., C.M. Havel, P. Jacob III, and N.L. Benowitz: Characterization of Nicotine Salts in 23 Electronic Cigarette Refill Liquids; Nicotine Tob. Res. 22 (2020) 1239–1243. DOI: 10.1093/ntr/ntz232
- University of Kentucky: Certificate of Analysis for 1R6F Certified Reference Cigarette; University of Kentucky, College of Agriculture, Food, and Environment, Center for Tobacco Reference Products, Lexington, KY, USA, 2018. Available at:
https://ctrp.uky.edu/assets/pdf/webdocs/CoA18_1R6F.pdf (accessed August 2024) - Sakai, Y., S. Mori, M. Yanagimachi, T. Takahashi, K. Shibuya, A. Kumagai, S. Ishikawa, S. Ito, and T. Fukushima: Inter-Laboratory Reproducibility and Interchangeability of 3R4F and 1r6f Reference Cigarettes in Mainstream Smoke Chemical Analysis and in Vitro Toxicity Assays; Beitr. Tabakforsch. Int. 29 (2020) 119–135. DOI: 10.2478/cttr-2020-0011
- Hashizume, T., S. Ishikawa, K. Matsumura, S. Ito, and T. Fukushima: Chemical and in vitro Toxicological Comparison of Emissions from a Heated Tobacco Product and the 1R6F Reference Cigarette; Toxicol. Rep. 10 (2023) 281–292. DOI: 10.1016/j.toxrep.2023.02.005
- International Organization for Standardization (ISO): ISO/IEC 17025:2017. General Requirements for the Competence of Testing and Calibration Laboratories; ISO, Geneva, Switzerland, 2017.
- International Conference on Harmonisation (ICH): Validation of Analytical Procedures: Text and Methodology Q2(R1); ICH Harmonised Tripartite Guideline, 2005. Step 4.
- Jameson, J.B., J. Wang, P.C. Bailey, M.J. Oldham, C.R. Smith, L.N. Jeong, D.K. Cook, A.L. Bates, S. Ullah, A.S.C. Pennington, and I.G. Gillman: Determination of Chemical Constituent Yields in E-Cigarette Aerosol Using Partial and Whole Pod Collections, a Comparative Analysis; Front. Chem. 11 (2023) 1223967. DOI: 10.3389/fchem.2023.1223967
- International Organization for Standardization (ISO): ISO 20768:2018 - Vapour Products — Routine Analytical Vaping Machine — Definitions and Standard Conditions; ISO, Geneva, Switzerland, 2018.
- Farsalinos, K.E. and G. Gillman: Carbonyl Emissions in E-Cigarette Aerosol: A Systematic Review and Methodological Considerations; Front. Physiol. 8 (2017) 1119. DOI: 10.3389/fphys.2017.01119
- Soulet, S. and R.A. Sussman: A Critical Review of Recent Literature on Metal Contents in E-Cigarette Aerosol; Toxics 10 (2022) 510. DOI: 10.3390/toxics10090510
- Soulet, S. and R.A. Sussman: Critical Review of the Recent Literature on Organic Byproducts in E-Cigarette Aerosol Emissions; Toxics 10 (2022) 714. DOI: 10.3390/toxics10120714
- Travis, N., M. Knoll, S. Cook, H. Oh, C.J. Cadham, L.M. Sanchez-Romero, and D.T. Levy: Chemical Profiles and Toxicity of Electronic Cigarettes: An Umbrella Review and Methodological Considerations; Int. J. Environ. Res. Public Health 20 (2023) 1908. DOI: 10.3390/ijerph20031908
- Eshraghian, E.A. and W.K. Al-Delaimy: A Review of Constituents Identified in E-Cigarette Liquids and Aerosols; Tob. Prev. Cessat. 7 (2021) 10. DOI: 10.18332/tpc/131111
- Geiss, O., I. Bianchi, and J. Barrero-Moreno: Correlation of Volatile Carbonyl Yields Emitted by E-Cigarettes with the Temperature of the Heating Coil and the Perceived Sensorial Quality of the Generated Vapours; Int. J. Hyg. Environ. Health 219 (2016) 268–277. DOI: 10.1016/j.ijheh.2016.01.004
- Talih, S., R. Salman, N. Karaoghlanian, A. El-Hellani, and A. Shihadeh: Carbonyl Emissions and Heating Temperatures across 75 Nominally Identical Electronic Nicotine Delivery System Products: Do Manufacturing Variations Drive Pulmonary Toxicant Exposure?; Chem. Res. Toxicol. 36 (2023) 342–346. DOI: 10.1021/acs.chemrestox.2c00391
- Li, Y., A.E. Burns, L.N. Tran, K.A. Abellar, M. Poindexter, X. Li, A.K. Madl, K.E. Pinkerton, and T.B. Nguyen: Impact of E-Liquid Composition, Coil Temperature, and Puff Topography on the Aerosol Chemistry of Electronic Cigarettes; Chem. Res. Toxicol. 34 (2021) 1640–1654. DOI: 10.1021/acs.chemrestox.1c00070
- Berg, C.J., D. Boyd Barr, E. Stratton, C. Escoffery, and M. Kegler: Attitudes Toward E-Cigarettes, Reasons for Initiating E-Cigarette Use, and Changes in Smoking Behavior After Initiation: A Pilot Longitudinal Study of Regular Cigarette Smokers; Open J. Prev. Med. 4 (2014) 789–800. DOI: 10.4236/ojpm.2014.410089.
- Zhao, D., V. Ilievski, V. Slavkovich, P. Olmedo, A. Domingo-Relloso, A.M. Rule, N.J. Kleiman, A. Navas-Acien, and M. Hilpert: Effects of E-Liquid Flavor, Nicotine Content, and Puff Duration on Metal Emissions from Electronic Cigarettes; Environ. Res. 204 (2022) 112270. DOI: 10.1016/j.envres.2021.112270
- Sleiman, M., J.M. Logue, V.N. Montesinos, M.L. Russell, M.I. Litter, L.A. Gundel, and H. Destaillats: Emissions from Electronic Cigarettes: Key Parameters Affecting the Release of Harmful Chemicals; Environ. Sci. Technol. 50 (2016) 9644–9651. DOI: 10.1021/acs.est.6b01741
- Jensen, R.P., R.M. Strongin, and D.H. Peyton: Solvent Chemistry in the Electronic Cigarette Reaction Vessel; Sci. Rep. 7 (2017) 42549. DOI: 10.1038/srep42549
- Uchiyama, S., M. Noguchi, A. Sato, M. Ishitsuka, Y. Inaba, and N. Kunugita: Determination of Thermal Decomposition Products Generated from E-Cigarettes; Chem. Res. Toxicol. 33 (2020) 576–583. DOI: 10.1021/acs.chemrestox.9b00410
- Jaccard, G., D.T. Djoko, A. Korneliou, R. Stabbert, M. Belushkin, and M. Esposito: Mainstream Smoke Constituents and in Vitro Toxicity Comparative Analysis of 3R4F and 1R6F Reference Cigarettes; Toxicol. Rep. 6 (2019) 222–231. DOI: 10.1016/j.toxrep.2019.02.009
- Pappas, R.S., N. Gray, M. Halstead, and C.H. Watson: Lactic Acid Salts of Nicotine Potentiate the Transfer of Toxic Metals into Electronic Cigarette Aerosols; Toxics 12 (2024) 65. DOI: 10.3390/toxics12010065
- U.S. Department of Health and Human Services (DHHS), Food and Drug Administration (FDA), Center for Tobacco Products (CTP): Guidance for Industry. Reporting Harmful and Potentially Harmful Constituents in Tobacco Products and Tobacco Smoke under Section 904(a)(3) of the Federal Food, Drug, and Cosmetic Act. Draft Guidance; DHHS, Silver Spring, MD, USA, 2012, 10 pp.
- U.S. Department of Health and Human Services (DHHS) and Food and drug Administration (FDA): Harmful and Potentially Harmful Constituents in Tobacco Products; Established List; Proposed Additions; Request for Comments; FDA, Rockville, MD, USA, 2019, pp. 38032–38035. 84 FR 38032
- Farsalinos, K.E., V. Voudris, and K. Poulas: E-Cigarettes Generate High Levels of Aldehydes Only in ‘Dry Puff’ Conditions; Addiction 110 (2015) 1352–1356. DOI: 10.1111/add.12942
- Visser, W.F., E.J.Z. Krüsemann, W.N.M. Klerx, K. Boer, N. Weibolt, and R. Talhout: Improving the Analysis of E-Cigarette Emissions: Detecting Human ‘Dry Puff’ Conditions in a Laboratory as Validated by a Panel of Experienced Vapers; Int. J. Environ. Res. Public Health 18 (2021) 11520. DOI: 10.3390/ijerph182111520
- Ali, F.R.M., A.B. Seidenberg, E. Crane, E. Seaman, M.A. Tynan, and K. Marynak: E-Cigarette Unit Sales by Product and Flavor Type, and Top-Selling Brands, United States, 2020–2022; MMWR Morb. Mortal. Wkly. Rep. 72 (2023) 672–677. DOI: 10.15585/mmwr.mm7225a1
- Health Canada: Regulating Tobacco and Vaping Products: Vaping Products Regulations; Health Canada, 2024, Available at:
https://www.canada.ca/en/health-canada/services/smoking-tobacco/vaping/product-safety-regulation.html - U.S. Food and Drug Administration (FDA): Premarket Tobacco Product Marketing Granted Orders; FDA, Silver Spring, MD, USA, 2024. Available at:
https://www.fda.gov/tobacco-products/premarket-tobacco-product-applications/premarket-tobacco-product-marketing-granted-orders