Have a personal or library account? Click to login

Comparison of the Particle Size Distribution and Vapor Phase of Electronic Nicotine Delivery Systems Using Two Impactors

Open Access
|Sep 2023

References

  1. Kane, D.B. and W. Li.: Particle Size Measurement of Electronic Cigarette Aerosol With a Cascade Impactor; Aerosol Sci. Technol. 55 (2021) 505–214. DOI: 10.1080/02786826.2020.1849536
  2. Biswas, P., C.L. Jones, and R.C. Flagan: Distortion of Size Distribution by Condensation and Evaporation in Aerosol Instruments; Aerosol Sci. Technol. 7 (1987) 231–246. DOI: 10.1080/02786828708959161
  3. Oldham, M.J., J. Zhang, M.J. Rusyniak, D.B. Kane, and W.P. Gardner: Particle Size Distribution of Selected Electronic Nicotine Delivery System Products; Food Chem. Tox. 113 (2018) 236–240. DOI: 10.1016/j.fct.2018.01.045
  4. Lehtimäki, M. and K. Willeke: Measurement Methods; in: Aerosol Measurement: Principles, Techniques and Applications, edited by K. Willeke and P.A. Baron, John Wiley & Sons, New York, NY, USA, 1993, pp. 116–118 & 122–125.
  5. Ingebrethsen, B.J., S.K. Cole, and S.I. Alderman: Electronic Cigarette Aerosol Particle Concentration and Size Distribution in the Mainstream of E-Cigarettes; Inhal. Toxicol. 24 (2012) 976–984. DOI: 10.3109/08958378.2012.744781
  6. Fuoco, F.C., G. Buonanno, L. Stabile, and P. Vigo: Influential Parameters on Particle Concentration and Size Distribution in the Mainstream of E-Cigarettes; Environ. Pollut. 184 (2014) 523–529. DOI: 10.1016/j.envpol.2013.10.010
  7. Fuchs, N.A.: The Mechanics of Aerosols; Pergamon Press, New York, NY, USA, 1964, pp 47–51 & 95–102.
  8. Martonen, T.B.: Deposition Patterns of Cigarette Smoke in Human Airways; Am. Ind. Hyg. Assoc. J. 53 (1992) 6–18. DOI: 10.1080/15298669291359249
  9. Hinds, W.C: Aerosol Technology: Properties, Behavior and Measurement of Airborne Particles, 2nd ed.; John Wiley, New York, NY, USA, 1999, pp. 379–385.
  10. Phalen, R.F., M.J. Oldham, and G.M. Schum: The Deposition of Concentrated Cigarette Smoke in Airway Models; Ann. Occup. Hyg. 46 (Suppl. 1) (2002) 343–345. DOI: 10.1093/annhyg/mef670
  11. Berenguer, C., J.A.M. Pereira, and J.S. Camara: Fingerprinting the Volatile Profile of Traditional Tobacco and E-Cigarettes: A Comparative Study; Microchemical J. 166 (2021) 106196. DOI: 10.1016/j.microc.2021.106196
  12. Lalo, H., L. Leclerc, J. Sorin, and J. Pourchez: Aerosol Droplet-Size Distribution and Airborne Nicotine Portioning in Particle and Gas Phases Emitted by Electronic Cigarettes; Sci. Reports 10 (2020) 21707. DOI: 10.1038/s41598-020-78749-6
  13. Luo, Y., Y. Wu, L. Li, Y. Guo, E. Cetintas, Y. Zhu, and A. Ozcan: Dynamic Imaging and Characterization of Volatile Aerosols in E-Cigarette Emissions Using Deep Learning-Based Holographic Microscopy; ACS Sens. 6 (2021) 2403–2410. DOI: 10.1021/acssensors.1c00628
  14. David, G., E.A. Parmentier, I. Taurino, and R. Signorell: Tracing the Composition of Single E-Cigarette Aerosol Droplets in Situ by Laser-Trapping and Raman Scattering; Sci. Reports 10 (2020) 7929. DOI: 10.1038/s41598-020-64886-5
  15. McAuley, T.R., P.K. Hopke, J. Zhao, and S. Babaian: Comparison of the Effects of E-Cigarette Vapor and Cigarette Smoke on Indoor Air Quality; Inhal. Toxicol. 24 (2012) 850–857. DOI: 10.3109/08958378.2012.724728
  16. Bertholon, J.-F., M.H. Becquemin, M. Roy, F. Roy, D. Ledur, I.A. Maesano, and B. Dautzenberg: Comparaison de l’aérosol de la cigarette électronique à celui des cigarettes ordinaires et de la chicha [Comparison of the Aerosol Produced by Electronic Cigarettes With Conventional Cigarettes and the Shisha]; Rev. Mal. Respir. 30 (2013) 752–757. DOI: 10.1016/j.rmr.2013.03.003
  17. Zhang, Y., W. Sumner, and D.-R. Chen: In Vitro Particle Size Distributions in Electronic and Conventional Cigarette Aerosols Suggest Comparable Deposition Patterns; Nicotine Tob. Res. 15 (2013) 501–508. DOI: 10.1093/ntr/nts165
  18. Marini, S. G. Buonanno, L. Stabile, and G. Ficco: Short-Term Effects of Electronic and Tobacco Cigarettes on Exhaled Nitric Oxide; Tox. Appl. Pharm. 278 (2014) 9–15. DOI: 10.1016/j.taap.2914.04.004
  19. Manigrasso, M., G. Buonanno, L. Stabile, and L. Morawska: Particle Doses in the Pulmonary Lobes of Electronic and Conventional Cigarette Users; Environ. Pollut. 202 (2015) 24–31. DOI: 10.1016/j.envpol.2015.03.008
  20. Manigrasso, M, G. Buonanno, F.C. Fuoco, L. Stabile, and P. Avino: Electronic Cigarettes: Age-Specific Generation-Resolved Pulmonary Doses; Environ. Sci. Pollut. Res. 24 (2017) 13068–13079. DOI: 10.1007/s11356-017-8914-8
  21. Mikheev, V.B., M.K. Brinkman, C.A. Granville, S.M. Gordon, and P.I. Clark: Real-Time Measurement of Electronic Cigarette Aerosol Size Distribution and Metals Content Analysis; Nicotine Tob. Res. 18 (2016) 1895–1902. DOI: 10.1093/ntr/ntw128
  22. Mikheev, V.B., A. Ivanov, E.A. Lucas, P.L. South, H.O. Colijn, and P.I. Clark: Aerosol Size Distribution Measurement of Electronic Cigarette Emissions Using Combined Differential Mobility and Inertial Impaction Methods: Smoking Machine and Puff Topography Influence; Aerosol Sci. Technol. 52 (2018) 1233–1248. DOI: 10.1080/02786826.2018.1513636
  23. Sundahl, M., E. Berg, and M. Svensson: Aerodynamic Particle Size Distribution and Dynamic Properties in Aerosols from Electronic Cigarettes; J. Aerosol Sci. 103 (2017) 141–150. DOI: 10.1016;j-jaerosci.2016.10.009
  24. Dibaji, S.A.R, B. Oktem, L. Williamson, J. DuMond, T. Cecil, J.P. Kim, S. Wickramasekara, M. Myers, and S. Guha: Characterization of Aerosols Generated by High Power Electronic Nicotine Delivery Systems (ENDS): Influence of Atomizer, Temperature and PG:VG Ratios; PLoS ONE 17 (2022) e0279309. DOI: 10.1371/journal.pone.0279309
  25. International Organization for Standardization (ISO): ISO 20768. Vapour Products – Routine Analytical Vaping Machine – Definitions and Standard Conditions; ISO, Geneva, Switzerland, 2018.
  26. International Organization for Standardization (ISO): ISO 27427. Anaesthetic and Respiratory Equipment – Nebulizing Systems and Components; ISO, Geneva, Switzerland, 2013.
  27. U.S. Environmental Protection Agency (EPA): EPA Method TO-17. Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling Onto Sorbent Tubes; in: Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, 2nd Ed., Center for Environmental Research Information, Office of Research and Development, EPA, Cincinnati, OH 45268, January 1999.
  28. International Organization for Standardization (ISO): ISO Method 16000-6. Indoor Air – Part 6: Determination of Volatile Organic Compounds in Indoor and Test Chamber Air by Active Sampling on Tenax TA Sorbent, Thermal Desorption and Gas Chromatography Using MS or MS-FID, ISO, Geneva, Switzerland, 2011.
  29. International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC): ISO/IEC 17025. General Requirements for the Competence of Testing and Calibration Laboratories, ISO, Geneva, Switzerland, 2017.
  30. Phalen, R.F: Inhalation Studies: Foundations and Techniques, 1st ed.; CRC Press, Boca Raton, FL, USA, 1984, pp. 78.
  31. Fischer, K.B. and G.A. Petrucci: Utilizing an Electrical Low-Pressure Impactor to Indirectly Probe Water Uptake via Particle Bounce Measurements; Atmos. Meas. Tech. 14 (2021) 7565–7577. DOI: 10.5194/amt-14-7565-2021
  32. Omaiye, E.E., K.J. McWhirter, W. Luo, J.F. Pankow, and P. Talbot: High-Nicotine Electronic Cigarette Products: Toxicity of JUUL Fluids and Aerosols Correlates Strongly With Nicotine and Some Flavor Chemical Concentrations; Chem. Res. Toxicol. 17 (2019) 1058–1069. DOI: 10.1021/acs.chemrestox.8b00381
  33. Chen, X., P.C. Bailey, C. Yang, B. Hiraki, M.J. Oldham, and I.G. Gillman: Targeted Characterization of the Chemical Composition of JUUL Systems Aerosol and Comparison With 3R4F Reference Cigarettes and IQOS Heat Sticks; Separations 8 (2021) 168. DOI: 10.3390/separations8100168
  34. Crosswhite, M.R., L.N. Jeong, P.C. Bailey, J.B. Jameson, A. Lioubomirov, D. Cook, C. Yang, A. Ozvald, M. Lyndon, and I.G. Gillman: Non-Targeted Chemical Characterization of JUUL-Menthol-Flavored Aerosols Using Liquid and Gas Chromatography; Separations 9 (2022) 367. DOI: 10.3390/separations9110367
  35. Ranpara, A., A.B. Stefaniak, E. Fernandez, and R.F. Lebouf: Effect of Puffing Behaviour on Particle Size Distributions and Respiratory Depositions from Pod-style Electronic Cigarette, or Vaping Products; Front. Public Health 9 (2021) 750402. DOI: 10.3389/fpubh.2021.750402
Language: English
Page range: 113 - 126
Submitted on: Apr 7, 2023
Accepted on: Aug 17, 2023
Published on: Sep 28, 2023
Published by: Institut für Tabakforschung GmbH
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Michael J. Oldham, Lena Jeong, Adam Ozvald, I. Gene Gillman, published by Institut für Tabakforschung GmbH
This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License.