Have a personal or library account? Click to login
Simulation of Heat and Mass Transfer of Cut Tobacco in a Batch Rotary Dryer by Multi-Objective Optimization Cover

Simulation of Heat and Mass Transfer of Cut Tobacco in a Batch Rotary Dryer by Multi-Objective Optimization

Open Access
|Dec 2020

References

  1. Stenström, S.: Drying of Biofuels from the Forest – A Review; Dry. Technol. 35 (2017) 1167–1181. DOI: 10.1080/07373937.2016.1258571
  2. Yang, F., M. Zhang, A.S. Mujumdar, Q. Zhong, and Z. Wang: Enhancing Drying Efficiency and Product Quality Using Advanced Pretreatments and Analytical Tools – An Overview; Dry. Technol. 36 (2018) 1824–1838. DOI: 10.1080/07373937.2018.1431658
  3. Lin, S.X.Q. and X.D. Chen: The Reaction Engineering Approach to Modelling the Cream and Whey Protein Concentrate Droplet Drying; Chem. Eng. Process. 46 (2007) 437–443. DOI: 10.1016/j.cep.2006.05.021
  4. Patel, K.C. and X.D. Chen: Sensitivity Analysis of the Reaction Engineering Approach to Modeling Spray Drying of Whey Proteins Concentrate; Dry. Technol. 26 (2008) 1334–1343. DOI: 10.1080/07373930802331019
  5. Temple, S.J. and A.J.B. van Boxtel: Equilibrium Moisture Content of Tea; J. Agric. Eng. Res. 74 (1999) 83–89. DOI: 10.1006/jaer.1999.0439
  6. Li, B., W. Zhu, P. Wang, D. Lu, L. Wang, and B. Wang: Fast Drying of Cut Tobacco in Drop Tube Reactor and its Effect on Petroleum Ether Tobacco Extracts; Dry. Technol. 36 (2018) 1304–1312. DOI: 10.1080/07373937.2017.1402022
  7. Rajan, K.S., K. Dhasandhan, S.N. Srivastava, and B. Pitchumani: Studies on Gas-Solid Heat Transfer During Pneumatic Conveying; Int. J. Heat Mass Transfer 51 (2008) 2801–2813. DOI: 10.1016/j.ijheatmasstransfer.2007.09.042
  8. Mabrouk, S.B., B. Khiari, and M. Sassi: Modelling of Heat and Mass Transfer in a Tunnel Dryer; Appl. Therm. Eng. 26 (2006) 2110–2118. DOI: 10.1016/j.applthermaleng.2006.04.007
  9. El-Mesery, H.S. and G. Mwithiga: Performance of a Convective, Infrared and Combined Infrared-Convective Heated Conveyor-Belt Dryer; J. Food Sci. Technol. 52 (2015) 2721–2730. DOI: 10.1007/s13197-014-1347-1
  10. Silva, D.I.S., G.F.M.V. Souza, and M.A.S. Barrozo: Heat and Mass Transfer of Fruit Residues in a Fixed Bed Dryer: Modeling and Product Quality; Dry. Technol. 37 (2019) 1321–1327. DOI: 10.1080/07373937.2018.1498509
  11. Białobrzewski, I., M. Zielińska, A.S. Mujumdar, and M. Markowski: Heat and Mass Transfer During Drying of a Bed of Shrinking Particles – Simulation for Carrot Cubes Dried in a Spout-Fluidized-Bed Drier; Int. J. Heat Mass Transfer 51 (2008) 4704–4716. DOI: 10.1016/j.ijheatmasstransfer.2008.02.031
  12. Silva, P.B., C.R. Duarte, and M.A.S. Barrozo: Dehydration of Acerola (Malpighia emarginata D.C.) Residue in a New Designed Rotary Dryer: Effect of Process Variables on Main Bioactive Compounds; Food Bioprod. Process. 98 (2016) 62–70. DOI: 10.1016/j.fbp.2015.12.008
  13. Geng, F., Z. Yuan, Y. Yan, D. Luo, H. Wang, B. Li, and D. Xu: Numerical Simulation on Mixing Kinetics of Slender Particles in a Rotary Dryer; Powder Technol. 193 (2009) 50–58. DOI: 10.1016/j.powtec.2009.02.005
  14. Geng, F., Y. Li, X. Wang, Z. Yuan, Y. Yan, and D. Luo: Simulation of Dynamic Processes on Flexible Filamentous Particles in the Transverse Section of a Rotary Dryer and its Comparison with Ideo-Imaging Experiments; Powder Technol. 207 (2011) 175–182. DOI: 10.1016/j.powtec.2010.10.027
  15. Geng, F., Y. Li, L. Yuan, M. Liu, X. Wang, Z. Yuan, Y. Yan, and D. Luo: Experimental Study on the Space Time of Flexible Filamentous Particles in a Rotary Dryer; Exp. Therm. Fluid Sci. 44 (2013) 708–715. DOI: 10.1016/j.expthermflusci.2012.09.011
  16. Jayas, D.S., S. Cenkowski, S. Pabis, and W.E Muir: Review of Thin-Layer Drying and Wetting Equations; Dry. Technol. 9 (1991) 551–588. DOI: 10.1080/07373939108916697
  17. Doymaz, İ. and O. İsmail: Drying Characteristics of Sweet Cherry; Food Bioprod. Process. 89 (2011) 31–38. DOI: 10.1016/j.fbp.2010.03.006
  18. Henderson, S. M. and S. Pabis: Grain Drying Theory: 1. Temperature Affection Drying Coefficient; J. Agric. Eng. Res. 6 (1961) 169–170.
  19. Menges, H.O. and C. Ertekin: Thin Layer Drying Model for Treated and Untreated Stanley Plums; Energy Convers. Manage. 47 (2006) 2337–2348. DOI: 10.1016/j.enconman.2005.11.016
  20. Midilli, A., H. Kucuk, and Z. Yapar: A New Model for Single-Layer Drying; Dry. Technol. 20 (2002) 1503–1513. DOI: 10.1081/DRT-120005864
  21. Hii, C.L., C.L. Law, and M. Cloke: Modeling Using a New Thin Layer Drying Model and Product Quality of Cocoa; J. Food Eng. 90 (2009) 191–198. DOI: 10.1016/j.jfoodeng.2008.06.022
  22. Xu, Q. and S. Pang: Mathematical Modeling of Rotary Drying of Woody Biomass; Dry. Technol. 26 (2008) 1344–1350. DOI: 10.1080/07373930802331050
  23. Gu, C., X. Zhang, B. Li, and Z. Yuan: Study on Heat and Mass Transfer of Flexible Filamentous Particles in a Rotary Dryer; Powder Technol. 267 (2014) 234–239. DOI: 10.1016/j.powtec.2014.06.059
  24. Zhu, W.K., L. Wang, K. Duan, L.Y. Chen, and B. Li: Experimental and Numerical Investigation of the Heat and Mass Transfer for Cut Tobacco During Two-Stage Convective Drying; Dry. Technol. 33 (2015) 907–914. DOI: 10.1080/07373937.2014.997882
  25. Chen, X.D., W. Pirini, and M. Ozilgen: The Reaction Engineering Approach to Modelling Drying of Thin Layer of Pulped Kiwifruit Flesh under Conditions of Small Biot Numbers; Chem. Eng. Process. 40 (2001) 311–320. DOI: 10.1016/s0255-2701(01)00108-8
  26. Putranto, A., X.D. Chen, Z. Xiao, and P.A. Webley: Mathematical Modeling of Intermittent and Convective Drying of Rice and Coffee Using the Reaction Engineering Approach (REA); J. Food Eng. 105 (2011) 638–646. DOI: 10.1016/j.jfoodeng.2011.03.036
  27. Putranto, A., X.D. Chen, and W. Zhou: Modeling of Baking of Thin Layer of Cake Using the Lumped Reaction Engineering Approach (L-REA); J. Food Eng. 105 (2011) 306–311. DOI: 10.1016/j.jfoodeng.2011.02.039
  28. Li, Q., Y.F. Li, Y. Zhang, Q. Chen, H. Huang, H. Chen, Y. Lin, H. Xiao, Z. Liao, L. Che, W. Xie, and X.D. Chen: Drying Kinetics Study of Irregular Fibril Materials in a “Differential” Laboratory Rotary Dryer: Case Study for Cut Tobacco; Dry. Technol. 36 (2017) 523–536. DOI: 10.1080/07373937.2017.1341920
  29. Whitman, W.G.: The Two Film Theory of Gas Absorption; Int. J. Heat Mass Transfer 5 (1962) 429–433. DOI: 10.1016/0017-9310(62)90032-7.
  30. Hills, B.P. and M. Harrison: Two-Film Theory of Flavour Release from Solids; Int. J. Food Sci. Technol. 30 (1995) 425–436. DOI: 10.1111/j.1365-2621.1995.tb01390.x
  31. Smith, J.M., H.C. Van Ness, and M.M. Abbott: Introduction to Chemical Engineering Thermodynamics; 7th Edition, McGraw-Hill Education, NY, USA, 2004.
  32. Henderson, S.M.: A Basic Concept of Equilibrium Moisture Content; Agric. Eng. 33 (1952) 29–32.
  33. Thompson, T.L., R.M. Peart, and G.H. Foster: Mathematical Simulation of Corn Drying - A New Model; Trans. ASAE 24 (1968) 582–586. Available at: https://www.ars.usda.gov/ARSUserFiles/30200525/34MathematicalSimulationofCornDrying.pdf (accessed November 2020)
  34. Chen, C.C. and R.V. Morey: Comparison of Four EMC/ERH Equations; Trans. ASAE 32 (1989) 983–990. Available at: https://elibrary.asabe.org (accessed November 2020)
  35. Chung, D.S. and H.B. Pfost: Adsorption and Desorption of Water Vapor by Cereal Grains and Their Products. Part II: Development of the General Isotherm Equation; Trans. ASAE 10 (1067) 552–555. Available at: https://elibrary.asabe.org (accessed November 2020)
  36. Pfost, H., S.G. Maurer, D. Chung, and G. Milliken: Summarizing and Reporting Equilibrium Moisture Data for Grains; ASAE Paper No. 76–3520, St. Joseph, MI, USA, 1976.
  37. Halsey, G.: Physical Adsorption on Non-Uniform Surfaces; J. Chem. Phys 16 (1948) 931–937. DOI: 10.1063/1.1746689
  38. Yaws, C.L.: Chemical Properties Handbook; McGraw-Hill Education, NY, USA, 1999.
  39. Linstrom, P.J. and W.G. Mallard: Nist Chemistry WebBook, Nist Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg, MD, USA, 2005. Available at: https://webbook.nist.gov/chemistry/
  40. Zhu, L., X. Qin, Z. Yuan, Y. Yan, D. Luo, and B. Li: Heat and Mass Transfer Characteristics of Filamentous Particles in Transverse Section of Rotary Dryer; Journal of Southeast University, Natural Science Edition, 44 (2014) 756–763. DOI: 10.3969/j.issn.1001-0505.2014.04.014
  41. Atashkari, K., N. Nariman-Zadeh, A. Pilechi, A. Jamali, and X. Yao: Thermodynamic Pareto Optimization of Turbojet Engines Using Multi-Objective Genetic Algorithms: Int. J. Thermal Sci. 44 (2005) 1061–1071. DOI: 10.1016/j.ijthermalsci.2005.03.016.
  42. Sarkar, D. and J.M. Modak: Pareto-Optimal Solutions for Multi-Objective Optimization of Fed-Batch Bioreactors Using Nondominated Sorting Genetic Algorithm; Chem. Eng. Sci. 60 (2005) 481–492. DOI: 10.1016/j.ces.2004.07.130.
  43. Sun, D.W.: Comparison and Selection of EMC/ERH Isotherm Equations for Rice; J. Stored Prod. Res. 35 (1999) 249–264. DOI: 10.1016/s0022-474x(99)00009-0.
Language: English
Page range: 145 - 155
Submitted on: Apr 9, 2020
|
Accepted on: Nov 9, 2020
|
Published on: Dec 31, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Feng Huang, Nan Deng, Qiaoling Li, Bin Li, Ruilin Hu, Miao Liang, Dengshan Luo, Le Wang, published by Institut für Tabakforschung GmbH
This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License.