Have a personal or library account? Click to login
Simulation of Heat and Mass Transfer of Cut Tobacco in a Batch Rotary Dryer by Multi-Objective Optimization Cover

Simulation of Heat and Mass Transfer of Cut Tobacco in a Batch Rotary Dryer by Multi-Objective Optimization

Open Access
|Dec 2020

Figures & Tables

Figure 1

Comparison between experimental data and simulations given by M-Hen/Classic model at varying weight factor r values.
Comparison between experimental data and simulations given by M-Hen/Classic model at varying weight factor r values.

Figure 2

Comparison between RMSE and MRD at various weight factor r values ranging from 0.9 to 0.01. Model: M-Hen/Classic model.
Comparison between RMSE and MRD at various weight factor r values ranging from 0.9 to 0.01. Model: M-Hen/Classic model.

Figure 3

Coefficients of km and kh at different weight factor r values in the range of 0.9 to 0.01. Model: M-Hen/Classic model.
Coefficients of km and kh at different weight factor r values in the range of 0.9 to 0.01. Model: M-Hen/Classic model.

Figure 4

Comparison between experimental data and simulations given by different models.
Comparison between experimental data and simulations given by different models.

Figure 5

Comparison between RMSE and MRD values under different heat and mass transfer models.
Comparison between RMSE and MRD values under different heat and mass transfer models.

Figure 6

Coefficients of km and kh for different heat and mass transfer models.
Coefficients of km and kh for different heat and mass transfer models.

Figure 7

Comparison of RMSE and MRD values of models for various drying conditions.
Comparison of RMSE and MRD values of models for various drying conditions.

j_cttr-2020-0013_tab_004

Nomenclature
A, B, CParameter in equilibrium model
CpSpecific heat capacity (J·kg−1·K−1)
hAmHeat transfer coefficient (W·kg−1·K−1)
hm AmMass transfer coefficient (m3·kg−1·s−1)
MMolecular weight (kg·mol−1)
MRDMean relative deviation
pVapor pressure (Pa)
RUniversal gas constant (J·mol−1·K−1)
RHRelative humidity (1)
ρVapor density (kg−1·m−3)
Subscripts
bHot gas
calCalculated value
eEquilibrium zone
expExperimental value
tCut tobacco
wwater

The drying conditions and their corresponding equilibrium moisture content in tobacco on dry basis Xe (28)_

Drying conditionsTobacco equilibrium moisture content (%)

Temperature (K)Relative humidity (%)
338.150.1150.048
358.150.0500.035
378.150.0240.027
398.150.0120.022
418.150.0070.018

Mathematical models of equilibrium moisture content_

Name of the model Equation
Henderson(Hen) RHe=1exp(ATXeB) R{H_e} = 1 - \exp \left( { - ATX_e^B} \right)
Modified Henderson(M-Hen) RHe=1exp(A(T+B)Xe1/c) R{H_e} = 1 - \exp \left( { - A\left( {T + B} \right)X_e^{1/c}} \right)
Modified Oswin(M-Osw) RHe=11+(A+BTXe)1c R{H_e} = {1 \over {1 + {{\left( {{{A + BT} \over {{X_e}}}} \right)}^{{1 \over c}}}}}
Chung-Pfost(C-P) RHe=exp(ATexp(BXe)) R{H_e} = \exp \left( { - {A \over T}\exp \left( { - B{X_e}} \right)} \right)
Modified Chung-Pfost(M-C-P) RHe=exp(AT+Bexp(CXe)) R{H_e} = \exp \left( { - {A \over {T + B}}\exp \left( { - C{X_e}} \right)} \right)
Halsey(Hal) RHe=exp(ATXeB) R{H_e} = \exp \left( { - {A \over {TX_e^B}}} \right)

Estimated coefficients and criteria for comparing EMC models for cut tobacco_

ParameterHendersonModified HendersonModified OswinChung-PfostModified Chung-PfostHalsey
A3.5239−0.9313−0.09143397.001.63·10522.6107
B3.0239−516.00730.000632.10782.09·1041.1462
C 0.42100.4553 26.4425
RMSE0.00100.00040.00040.00290.00150.0018
MRD0.05540.02550.01720.17510.09400.1052
Language: English
Page range: 145 - 155
Submitted on: Apr 9, 2020
|
Accepted on: Nov 9, 2020
|
Published on: Dec 31, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Feng Huang, Nan Deng, Qiaoling Li, Bin Li, Ruilin Hu, Miao Liang, Dengshan Luo, Le Wang, published by Institut für Tabakforschung GmbH
This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License.