Have a personal or library account? Click to login
Ecosystem Services of Blackthorn: Effects of Harvesting Time on the Functional Extraction of Polyphenolic Compounds and Antioxidant Activity Cover

Ecosystem Services of Blackthorn: Effects of Harvesting Time on the Functional Extraction of Polyphenolic Compounds and Antioxidant Activity

Open Access
|Nov 2025

References

  1. Al-Maiman, S.A. & Ahmad, D. 2002. Changes in physical and chemical properties during pomegranate (Punica granatum L.) fruit maturation. Food Chemistry, 76: 437–441. https://doi.org/10.1016/S0308-8146(01)00301-6
  2. Angulo-Lopez, J.E., Flores-Gallegos, A.C., Ascacio-Valdes, J.A., Contreras Esquivel, J.C., Torres-León, C., Rúelas-Chácon, X. & Aguilar, C.N. 2022. Antioxidant dietary fiber sourced from agroindustrial byproducts and its applications. Foods, 12(1): 159. https://doi.org/10.3390/foods12010159
  3. AOAC, 1990. Official methods of analysis of the association of official analytical chemists (AOAC). In Helrich, K., ed.Vols. 1 and 2, 15th edition. Arlington, Virginia, AOAC.
  4. Araujo-Rodrigues, H., Santos, D., Campos, D.A., Ratinho, M., Rodrigues, I.M., & Pintado, M.E. 2021. Development of frozen pulps and powders from carrot and tomato by-products: impact of processing and storage time on bioactive and biological properties. Horticulturae, 7(7): 185. https://doi.org/10.3390/horticulturae7070185
  5. Backes, E., Leichtweis, M.G., Pereira, C., Carocho, M., Barreira, J.C., Genena, A.K., Baraldi, I.J., Barreiro, M.F., Barros, L. & Ferreira, I.C. 2020. Ficus carica L. and Prunus spinosa L. extracts as new anthocyanin-based food colorants: A thorough study in confectionery products. Food Chemistry, 333: 127457. https://doi.org/10.1016/j.foodchem.2020.127457
  6. Beed, F., Taguchi, M., Telemans, B., Kahane, R., Le Bellec, F., Sourisseau, J. M., Malézieux, E., Magalie, L.-J., Deberdt, P., Deguine, J.-P., Faye, E., & Ramsay, G. 2021. Fruit and vegetables. Opportunities and challenges for small-scale sustainable farming. Rome, Italy, FAO–CIRAD. https://doi.org/10.4060/cb4173en
  7. Benzie, I. & Strain, J. 1996. Тhe ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power: the FRAP assay”. Analytical Biochemistry, 239: 70-76. http://dx.doi.org/10.1006/abio.1996.0292
  8. Blagojević, B., Četojević-Simin, D., Djurić, S., Lazzara, G., Milioto, S., Agić, D., Vasile, B.S. & Popović, B.M. 2022. Anthocyanins and phenolic acids from Prunus spinosa L. encapsulation in halloysite and maltodextrin based carriers. Applied Clay Science, 222: 106489. https://doi.org/10.1016/j.clay.2022.106489
  9. Brown, J.A., Montgomery, W.I., & Provan, J. 2022. Strong spatial structuring of clonal genetic diversity within blackthorn (Prunus spinosa) hedgerows and woodlands. Tree Genetics & Genomes, 18: 5. https://doi.org/10.1007/s11295-022-01538-x
  10. Cefali, L.C., Ataide, J.A., Fernandes, A.R., Sousa, I.M.O., Goncalves, F., Eberlin, S., Davila, J.L., Jozala, A.F., Chaud, M.V. & Sanchez-Lopez, E. 2019. Flavonoid-enriched plant-extract-loaded emulsion: a novel phytocosmetic sunscreen formulation with antioxidant properties. Antioxidants, 8(10): 443. https://doi.org/10.3390/antiox8100443
  11. Čukanović, J., Petrov, Dj., Đorđević, S., Galečić, N., Skoačjić, D., Vujičić, D. & Ocokoljić, M. 2024. Prunus spinosa L. in periurban environments under climate change conditions; vulnerability and adaptability. Contemporary Agriculture, 73: (3-4): 165-171. https://doi.org/10.2478/contagri-2024-0020UDC:712.24
  12. Fernandes, A., Mateus, N. & de Freitas, V. 2023. Polyphenol-dietary fiber conjugates from fruits and vegetables: nature and biological fate in a food and nutrition perspective. Foods, 12(5): 1052. https://doi.org/10.3390/foods12051052
  13. Horvat, J. & Mijoč, J., 2012. Osnove statistike [Fundamentals of statistics]. Zagreb, Croatia, Naklada Ljevak d.o.o. 482 pp.
  14. Karakas, N., Okur, M.E., Oztruk, I., Ayla, S., Karadag, A.E. & Polat, D.C. 2019. Antioxidant activity of blackthorn (Prunus spinosa L.) fruit extract and cytotoxic effects on various cancer cell lines. Medeniyet Medical Journal, 34:297-304. https://doi.org/10.5222/MMJ.2019.87864
  15. Kolarov, R., Prvulović, D. & Gvozdenac, S. 2021. Antioxidant capacity of wild-growing orange mullein (Verbascum phlomoides L.). Agro-knowledge Journal, 22 (4): 127-135. https://doi.org/10.7251/AGREN2104127K
  16. Kotsou, K., Stoikou, M., Athanasiadis, V., Chatzimitakos, T., Mantiniotou, M., Sfougaris, A.I. & Lalas, S.I. 2023. Enhancing antioxidant properties of Prunus spinosa fruit extracts via extraction optimization. Horticulturae, 9: 942. https://doi.org/10.3390/horticulturae9080942
  17. Leichtweis, M.G., Pereira, C., Prieto, M., Barreiro, M.F., Baraldi, I.J., Barros, L. & Ferreira, I.C. 2019. Ultrasound as a rapid and low-cost extraction procedure to obtain anthocyanin-based colorants from Prunus spinosa L. fruit epicarp: Comparative study with conventional heat-based extraction. Molecules, 24(3): 573. https://doi.org/10.3390/molecules24030573
  18. Ljubojević, M., Čukanović, J., Ðorđević, S., Petrov, Dj., Galečić, N., Skočajić, D. & Ocokoljić, M. 2025. Characterizing the flowering phenology of Rosa rugosa Thunb. as an ecosystem service in the context of climate change in Kupinovo (Vojvodina), Serbia. Plants, 14: 1875. https://doi.org/10.3390/plants14121875
  19. Magiera, A., Czerwińska, M.E., Owczarek, A., Marchelak, A., Granica, S. & Olszewska, M.A. 2022. Polyphenol-enriched extracts of Prunus spinosa fruits: anti-inflammatory and antioxidant effects in human immune cells ex vivo in relation to phytochemical profile. Molecules, 27(5): 1691. https://doi.org/10.3390/molecules27051691
  20. Marčetić, M., Samardžić, S., Ilić, T., Božić, D.D. & Vidović, B. 2022. Phenolic composition, antioxidant, anti-enzymatic, antimicrobial and prebiotic properties of Prunus spinosa L. fruits. Foods, 11(20): 3289. https://doi.org/10.3390/foods11203289
  21. Markham, K.R., 1989. Methods in Plant Biochemistry. London, UK, Academic Press. pp.197–237
  22. McLain, R., Poe, M., Hurley, P. T., Lecompte-Mastenbrookc, J. & Emery, M. R. 2012. Producing edible landscapes in Seattle’s urban forest. Urban Forestry & Urban Greening, 11: 187–194. https://doi.org/10.1016/j.ufug.2011.12.002
  23. Moskalets, V., Hulko, B., Matkovska, S., Knyazyuk, O. & Polyvanyi, S. 2024. Blackthorn (Prunus spinosa L.): Ecological features of promising forms and the value of the nutrient composition of their fruits for production of functional products. Biological Studies, 18(4): 175–190, https://doi.org/10.30970/sbi.1804.793
  24. Nagavani, V. & Raghava Rao, T. 2010. Evaluation of antioxidant potential and qualitative analysis of major polyphenols by RP-HPLC in Nymphaea nouchali Brum flowers. International Journal of Pharmacy and Pharmaceutical Sciences, 2 (Suppl. 4): 98–104.
  25. Negrean, O.-R., Farcas, A.C., Pop, O.L. & Socaci, S.A. 2023. Blackthorn - a valuable source of phenolic antioxidants with potential health benefits. Molecules, 28: 3456. https://doi.org/10.3390/molecules28083456
  26. Ocokoljić, M. & Petrov, Dj. 2022. Dekorativna dendrologija [Decorative dendrology]. Belgrade, Serbia, University of Belgrade, Faculty of Forestry. ISBN 978-86-7299-339-4.
  27. Olesinska, K., Sugier, D. & Seczyk, Ł. 2019. The influence of selected preservation methods and storage time on the content of antioxidants in blackthorn (Prunus spinosa L.) fruits. Agronomy Science, 74: 53–62. https://doi.org/10.24326/as.2019.1.5
  28. Orlandi, F., Marrapodi, S., Proietti, C., Ruga, L. & Fornaciari, M. 2023. Ecosystem functions of fruit woody species in an urban environment. Environmental Monitoring and Assessment, 195: 118. https://doi.org/10.1007/s10661-022-10717-1
  29. Petrov, Dj., Ocokoljić, M., Galečić, N., Skočajić, D. & Simović, I. 2024. Adaptability of Prunus cerasifera Ehrh. to climate changes in multifunctional landscape. Atmosphere, 15: 335. https://doi.org/10.3390/atmos15030335
  30. Petrov, Dj., Čukanović, J., Kolarov, R., Galečić, N., Skočajić, D., Vujičić, D. & Ocokoljić, M. 2025. Chaenomeles japonica (Thunb.) Lindl. - fruit crop in the context of climate change: cultural and ecosystem services. In Proceedings of the International Conference ACCHE (Annual conference on Challenges of Contemporary Higher Education), Kopaonik, Serbia, 3–7 February 2025, pp.327-331. https://acche.rs/ACCHE_2025/radovi/agriculture/47.pdf
  31. Przybylski, R., Lee, Y.C. & Eskin, N.A.M. 1998. Antioxidant and radical-scavenging activities of buckwheat seed components. JAOCS, Journal of the American Oil Chemists’ Society, 75(11): 1595–1601. https://doi.org/10.1007/s11746-998-0099-3
  32. Popescu, I. & Caudullo, G. 2016. Prunus spinosa in Europe: Distribution, habitat, usage and threats. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T. & Mauri, A., Eds. European Atlas of Forest Tree Species. Luxembourg, Publication Office of the European Union. p. 145.
  33. Radovanović, B.C., Anđelković, S., Radovanović, A.B. & Anđelković, M.Z. 2013. Antioxidant and antimicrobial activity of polyphenol extracts from wild berry fruits grown in southeast Serbia. Tropical Journal of Pharmaceutical Research, 12: 813–819. https://doi.org/10.4314/tjpr.v12i5.23
  34. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. & Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10): 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  35. RHMZ (2025): Republic Hydrometeorological Service of Serbia. Available at: https://www.hidmet.gov.rs/ciril/meteorologija/klimatologija_godisnjaci.php (аccessed 30 June 2025)
  36. Ruiz-Rodriguez, B.M., De Ancos, B., Sanchez-Moreno, C., Fernandez-Ruiz, V., de Cortes Sanchez-Mata, M., Camara, M. & Tardio, J. 2014. Wild blackthorn (Prunus spinosa L.) and hawthorn (Crataegus monogyna Jacq.) fruits as valuable sources of antioxidants. Fruits, 69(1): 61–73. https://doi.org/10.1051/fruits/2013102
  37. Sikora, E., Bieniek, M.I. & Borczak, B. 2013. Composition and antioxidant properties of fresh and frozen stored blackthorn fruits (Prunus spinosa L.). Acta Scientiarum Polonorum Technologia Alimentaria, 12(4): 365–372.
  38. Veličković, J.M., Kostić, D.A., Stojanović, G.S., Mitić, S.S., Mitić, M.N., Ranđelović, S.S. & Ðorđević, A.S. 2014. Phenolic composition, antioxidant and antimicrobial activity of the extracts from Prunus spinosa L. fruit. Hemijska industrija, 68: 297–303. https://doi.org/10.2298/HEMIND130312054V
  39. Veličković, I., Žižak, Ž., Rajčević, N., Ivanov, M., Soković, M., Marin, P.D. & Grujić, S. 2021. Prunus spinosa L. leaf extracts: polyphenol profile and bioactivities. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49: 12137. https://doi.org/10.15835/nbha49112137
  40. WRB (IUSS Working Group). 2015. World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Rome, Italy, FAO.
  41. Zhang, Y., Li, Y., Ren, X., Zhang, X., Wu, Z., & Liu, L. 2023. The positive correlation of antioxidant activity and prebiotic effect about oat phenolic compounds. Food Chemistry, 402: 134231. https://doi.org/10.1016/j.foodchem.2022.134231
DOI: https://doi.org/10.2478/contagri-2025-0026 | Journal eISSN: 2466-4774 | Journal ISSN: 0350-1205
Language: English
Submitted on: Jul 22, 2025
Accepted on: Aug 4, 2025
Published on: Nov 20, 2025
Published by: University of Novi Sad
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Radenka Kolarov, Jelena Čukanović, Sara Đorđević, Djurdja Petrov, Nevenka Galečić, Dejan Skočajić, Mirjana Ocokoljić, published by University of Novi Sad
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT