Have a personal or library account? Click to login
Allelochemicals and Their Importance in Agriculture Cover

Allelochemicals and Their Importance in Agriculture

Open Access
|Oct 2025

References

  1. Abdel-Massih, R.M., Debs, E., Othman, L., Attieh, J. & Cabrerizo, F. M. 2023. Glucosinolates, a natural chemical arsenal: More to tell than the myrosinase story. Frontiers in Microbiology, 14: 1130208. https://doi.org/10.3389/fmicb.2023.1130208
  2. Aharoni, A., Jongsma, M.A., Kim, T.Y., Ri, M.B., Giri, A.P., Verstappen, F.W., ... & Bouwmeester, H.J. 2006. Metabolic engineering of terpenoid biosynthesis in plants. Phytochemistry Reviews, 5: 49–58. https://doi.org/10.1007/s11101-005-2175-1
  3. Al-Jihashi, W.S. 2005. The Biological Activities of Allelochemicals of Sunflower Helianthus annuus L. Different Growth Stages. Mosul University, Iraq.
  4. Ashihara, H. & Crozier, A. 2001. Caffeine: a well known but little mentioned compound in plant science. Trends in Plant Science, 6(9): 407–413. https://doi.org/10.1016/S1360-1385(01)02023-9
  5. Badri, D.V., Quintana, N., El Kassis, E.G., Kim, H.K., Choi, Y.H., Sugiyama, A., Verpoorte, R., Martinoia, E., Manter, D.K. & Vivanco, J. M. 2009. An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiology, 151(4): 2006–2017. https://doi.org/10.1104/pp.109.146290
  6. Bais, H.P., Vepachedu, R., Gilroy, S., Callaway, R.M. & Vivanco, J.M. 2006. Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science, 301(5638): 1377–1380. https://doi.org/10.1126/science.1083244
  7. Bertholdsson, N.O., Andersson, S.C. & Merker, A. 2012. Allelopathic potential of Triticum spp., Secale spp. and Triticosecale spp. and use of chromosome substitutions and translocations to improve weed suppression ability in winter wheat. Plant Breeding, 131(1): 75–80. https://doi.org/10.1111/j.1439-0523.2011.01934.x
  8. Bertin, C., Yang, X. & Weston, L.A. 2003. The role of root exudates and allelochemicals in the rhizosphere. Plant and Soil, 256: 67–83. https://doi.org/10.1023/A:1026290508161
  9. Brown, D.E., Rashotte, A.M., Murphy, A.S., Normanly, J., Tague, B.W., Peer, W.A., ... & Muday, G.K. 2001. Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiology, 126(2): 524–535. https://doi.org/10.1104/pp.126.2.524
  10. Chang, X., Wang, Y., Sun, J., Xiang, H., Yang, Y., Chen, S. ... & Yang, C. 2022. Mitigation of tobacco bacteria wilt with microbial degradation of phenolic allelochemicals. Scientific Reports, 12(1): 20716. https://doi.org/10.1038/s41598-022-25233-7
  11. Cheng, F. & Cheng, Z. 2015. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Frontiers in Plant Science, 6: 1020. https://doi.org/10.3389/fpls.2015.01020
  12. Cheng, Z.H. & Xu, P. 2013. Lily (Lilium spp.) root exudates exhibit different allelopathies on four vegetable crops. Acta Agriculturae Scandinavica, 63: 169–175. https://doi.org/10.1080/09064710.2013.768217
  13. Cheng, Z.H., Wang, C.H., Xiao, X.M. & Khan, M.A. 2011. Allelopathic effects of decomposing garlic stalk on some vegetable crops. African Journal of Biotechnology, 10: 15514–15520. https://doi.org/10.5897/AJB11.3367
  14. Despland, E., Bourdier, T., Dion, E. & Bauce, E. 2016. Do white spruce epicuticular wax monoterpenes follow foliar patterns? Canadian Journal of Forest Research, 46: 1051–1058. https://doi.org/10.1139/cjfr-2016-0105
  15. Didon, U.M., Kolseth, A.K., Widmark, D. & Persson, P. 2014. Cover crop residues—effects on germination and early growth of annual weeds. Weed Science, 62(2): 294–302. https://doi.org/10.1614/WS-D-13-00078.1
  16. Dixon, R.A., Achnine, L., Kota, P., Liu, C.J., Reddy, M.S.S. & Wang, L. 2002. The phenylpropanoid pathway and plant defense-a genomics perspective. Molecular Plant Pathology, 3(5): 371–390. https://doi.org/10.1046/j.1364-3703.2002.00172.x
  17. Dixon, R.A. & Pasinetti, G.M. 2010. Flavonoids and isoflavonoids: from plant biology to agriculture and neuroscience. Plant Physiology, 154(2): 453–457. https://doi.org/10.1104/pp.110.161143
  18. Duke, S.O. & Dayan, F.E. 2003. Allelopathy in ecological sustainable agriculture. In: M. J. Reigosa, M. González, & L. Sánchez (Eds.), Allelopathy: Chemistry and Mode of Action of Allelochemicals (pp. 511–537). Springer. https://doi.org/10.1007/978-94-017-0333-6_21
  19. Duke, S.O., Dayan, F.E., Romagni, J.G. & Rimando, A.M. 2000. Natural products as sources of herbicides: current status and future trends. Weed Research, 40(1): 99–111. https://doi.org/10.1046/j.1365-3180.2000.00204.x
  20. El-Sharkawy, E. & Selim, Y. 2018. Three new coumarin types from aerial parts of Ammi majus L. and their cytotoxic activity. Zeitschrift für Naturforschung C, 73(1-2): 1–7. https://doi.org/10.1515/znc-2017-0102
  21. Fahey, J.W., Zalcmann, A.T. & Talalay, P. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 56(1): 5–51. https://doi.org/10.1016/S0031-9422(00)00416-2
  22. Farooq, M., Hussain, T., Wakeel, A. & Cheema, Z.A. 2014. Differential response of maize and mungbean to tobacco allelopathy. Experimental Agriculture, 50(4): 611–624. https://doi.org/10.1017/S0014479714000014
  23. Fernández-Aparicio, M., Masi, M., Cimmino, A., Vilariño, S. & Evidente, A. 2021. Allelopathic effect of quercetin, a flavonoid from Fagopyrum esculentum roots in the radicle growth of Phelipanche ramosa: Quercetin natural and semisynthetic analogues were used for a structure-activity relationship investigation. Plants, 10(3): 543. https://doi.org/10.3390/plants10030543
  24. Gershenzon, J. & Dudareva, N. 2007. The function of terpene natural products in the natural world. Nature Chemical Biology, 3(7): 408–414. https://doi.org/10.1038/nchembio.2007.5
  25. Golijan Pantović, J. & Sečanski, M. 2023. Weed control in organic farming. Contemporary Agriculture, 72(1-2): 43–56. https://doi.org/10.2478/contagri-2023-0007
  26. Golijan Pantović, J., Sečanski, M., Gordanić, S. & Šarčević Todosijević, L.J. 2023. Weed biological control with fungi-based bioherbicides. Acta Agriculturae Serbica, 28(55): 23–37. https://doi.org/10.5937/AASer2355023G
  27. Golijan, J. & Sečanski, M. 2021. The development of organic agriculture in Serbia and worldwide. Contemporary Agriculture, 70(3-4): 85–94. https://doi.org/10.2478/contagri-2021-0013
  28. Gouda, N.A., Saad, M.M. & Abdelgaleil, S.A. 2016. Pre and post herbicidal activity of monoterpenes against barnyard grass (Echinochloa crus-galli). Weed Science, 64(1): 191–200. https://doi.org/10.1614/WS-D-15-00031.1
  29. Gu, Y., Li, H. B. & Kong, C. H. 2008. Allelopathic potential of barnyard grass on rice and soil microbes in paddy. Allelopathy Journal, 21(2): 389.
  30. Han, M., Yang, H., Huang, H., Du, J., Zhang, S. & Fu, Y. 2024. Allelopathy and allelobiosis: Efficient and economical alternatives in agroecosystems. Plant Biology, 26(1): 11–27. https://doi.org/10.1111/plb.13422
  31. Handiseni, M., Brown, J., Zemetra, R. & Mazzola, M. 2013. Effect of Brassicaceae seed meals with different glucosinolate profiles on Rhizoctonia root rot in wheat. Crop Protection, 48: 1–5. https://doi.org/10.1016/j.cropro.2013.03.005
  32. Harun, S., Abdullah-Zawawi, M.R., Goh, H.H. & Mohamed-Hussein, Z.A. 2020. A comprehensive gene inventory for glucosinolate biosynthetic pathway in Arabidopsis thaliana. Journal of Agricultural and Food Chemistry, 68(28): 7281–7297. https://doi.org/10.1021/acs.jafc.0c01613
  33. Hawes, M., Allen, C., Turgeon, B.G., Curlango-Rivera, G., Minh, T.T., Huskey, D.A. & Xiong, Z. 2016. Root border cells and their role in plant defense. Annual Review of Phytopathology, 54: 355–376. https://doi.org/10.1146/annurev-phyto-080615-095830
  34. He, Y., Ding, N., Shi, J.C., Wu, M., Liao, H. & Xu, J.M. 2013. Profiling of microbial PLFAs: Implications for interspecific interactions due to intercropping which increase phosphorus uptake in phosphorus limited acidic soils. Soil Biology and Biochemistry, 57: 625–634. https://doi.org/10.1016/j.soilbio.2012.10.007
  35. Hickman, D.T., Rasmussen, A., Ritz, K., Birkett, M.A. & Neve, P. 2021. Allelochemicals as multi‐kingdom plant defence compounds: towards an integrated approach. Pest Management Science, 77(3): 1121–1131. https://doi.org/10.1002/ps.6172
  36. Huang, S.Q., Xiang, A.L., Che, L.L., Chen, S., Li, H., Song, J.B. & Yang, Z.M. 2010. A set of miRNAs from Brassica napus in response to sulfate deficiency and cadmium stress. Plant Biotechnology Journal, 8(9): 887–899. https://doi.org/10.1111/j.1467-7652.2010.00514.x
  37. Hussain, W. S. & Abbas, M. M. 2022. Application of allelopathy in crop production. In: M. Asaduzzaman & M. Afroz (Eds.), Agricultural development in Asia: potential use of nano-materials and nano-technology. BoD–Books on Demand. https://doi.org/10.5772/intechopen.101436
  38. Igea, J. & Tanentzap, A.J. 2020. Angiosperm speciation cools down in the tropics. Ecology Letters, 23(4): 692–700. https://doi.org/10.1111/ele.13441
  39. Jurić, S., Sopko Stracenski, K., Król-Kilińska, Ż., Žutić, I., Uher, S.F., Đermić, E. ... & Vinceković, M. 2020. The enhancement of plant secondary metabolites content in Lactuca sativa L. by encapsulated bioactive agents. Scientific Reports, 10(1): 3737. https://doi.org/10.1038/s41598-020-60692-6
  40. Khanh, T.D., Elzaawely, A.A., Chung, I.M., Ahn, J.K., Tawata, S. & Xuan, T.D. 2007. Role of allelochemicals for weed management in rice. Allelopathy Journal, 19(1): 85–96.
  41. Kohnen-Johannsen, K.L. & Kayser, O. 2019. Tropane alkaloids: chemistry, pharmacology, biosynthesis and production. Molecules, 24(4): 796. https://doi.org/10.3390/molecules24040796
  42. Kobayashi, K. 2004. Factors affecting phytotoxic activity of allelochemicals in soil. Weed Biology and Management, 4(1): 1-7. https://doi.org/10.1111/j.1445-6664.2003.00112.x
  43. Kong, C.H., Li, Z., Li, F.L., Xia, X.X. & Wang, P. 2024. Chemically mediated plant–plant interactions: Allelopathy and allelobiosis. Plants, 13(5): 626. https://doi.org/10.3390/plants13050626
  44. Kong, C., Xu, X., Liang, W., Hu, F., Wang, P. & Jiang, Y. 2004. Release and activity of allelochemicals from allelopathic rice seedlings. Journal of Agricultural and Food Chemistry, 52(10): 2861–2865. https://doi.org/10.1021/jf035467i
  45. Kostina-Bednarz, M., Płonka, J. & Barchanska, H. 2023. Allelopathy as a source of bioherbicides: challenges and prospects for sustainable agriculture. Reviews in Environmental Science and Bio/Technology, 22(2): 471–504. https://doi.org/10.1007/s11157-022-09630-6
  46. Latif, S., Chiapusio, G. & Weston, L. A. 2017. Allelopathy and the role of allelochemicals in plant defence. In: Advances in Botanical Research, Vol. 82, pp. 19–54, Academic Press. https://doi.org/10.1016/bs.abr.2017.06.001
  47. Lengai, G.M., Muthomi, J.W. & Mbega, E.R. 2020. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Scientific African, 7: e00239. https://doi.org/10.1016/j.sciaf.2020.e00239
  48. Lee, E.J. & Facchini, P. 2010. Norcoclaurine synthase is a member of the pathogenesis-related 10/Bet v1 protein family. The Plant Cell, 22(10): 3489-3503. https://doi.org/10.1105/tpc.110.077958
  49. Li, X., Cai, K., Fan, Z., Wang, J., Wang, L., Wang, Q., ... & Zhao, X. 2022. Dissection of transcriptome and metabolome insights into the isoquinoline alkaloid biosynthesis during stem development in Phellodendron amurense (Rupr.). Plant Science, 325: 111461. https://doi.org/10.1016/j.plantsci.2022.111461
  50. Li, Y.H., Xia, Z.C. & Kong, C.H. 2016. Allelobiosis in the interference of allelopathic wheat with weeds. Pest Management Science, 72(11): 2146–2153. https://doi.org/10.1002/ps.4220
  51. Liu, W., Feng, Y., Yu, S., Fan, Z., Li, X., Li, J. & Yin, H. 2021. The flavonoid biosynthesis network in plants. International Journal of Molecular Sciences, 22(23): 12824. https://doi.org/10.3390/ijms222312824
  52. Macías, F.A., Galindo, J.L. & Galindo, J.C. 2007. Evolution and current status of ecological phytochemistry. Phytochemistry, 68(22-24): 2917-2936. https://doi.org/10.1016/j.phytochem.2007.09.015
  53. Macías, F.A., Mejías, F.J. & Molinillo, J.M. 2019. Recent advances in allelopathy for weed control: from knowledge to applications. Pest Management Science, 75(9): 2413-2436. https://doi.org/10.1002/ps.5355
  54. Macías, F.A., Oliveros-Bastidas, A., Marín, D., Chinchilla, N., Castellano, D. & Molinillo, J.M. 2014. Evidence for an allelopathic interaction between rye and wild oats. Journal of Agricultural and Food Chemistry, 62(39): 9450-9457. https://doi.org/10.1021/jf502711t
  55. Maffei, M.E., Mithöfer, A. & Boland, W. 2007. Insects feeding on plants: rapid signals and responses preceding the induction of phytochemical release. Phytochemistry, 68(22-24): 2946-2959. https://doi.org/10.1016/j.phytochem.2007.05.020
  56. Mahmood, K., Khaliq, A., Cheema, Z.A. & Arshad, M. 2013. Allelopathic activity of Pakistani wheat genotypes against wild oat (Avena fatua L.). Pakistan Journal of Agricultural Sciences, 50(2): 169-176.
  57. Mallik, A.U. 2002. Chemical ecology of plants: allelopathy in aquatic and terrestrial ecosystems. Basel: Birkhäuser Verlag.
  58. Mallik, M.A.B. & Williams, R.D. 2005. Allelopathic growth stimulation of plants and microorganisms. Allelopathy Journal, 16(2): 175-198.
  59. Mazzola, M., Brown, J., Izzo, A.D. & Cohen, M.F. 2007. Mechanism of action and efficacy of seed meal-induced pathogen suppression differ in a Brassicaceae species and time-dependent manner. Phytopathology, 97(4): 454-460. https://doi.org/10.1094/PHYTO-97-4-0454
  60. Mazzola, M., Granatstein, D.M., Elfving, D.C. & Mullinix, K. 2001. Suppression of specific apple root pathogens by Brassica napus seed meal amendment regardless of glucosinolate content. Phytopathology, 91(7): 673-679. https://doi.org/10.1094/PHYTO.2001.91.7.673
  61. Movahedi, A., Wei, H., Pucker, B., Ghaderi-Zefrehei, M., Rasouli, F., Kiani-Pouya, A. ... & Zhou, X. 2022. Isoprenoid biosynthesis regulation in poplars by methylerythritol phosphate and mevalonic acid pathways. Frontiers in Plant Science, 13: 968780. https://doi.org/10.3389/fpls.2022.968780
  62. Muzell Trezzi, M., Vidal, R.A., Balbinot Junior, A.A., von Hertwig Bittencourt, H. & da Silva Souza Filho, A.P. 2016. Allelopathy: driving mechanisms governing its activity in agriculture. Journal of Plant Interactions, 11(1): 53-60. https://doi.org/10.1080/17429145.2016.1145177
  63. Nagegowda, D.A. 2010. Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Letters, 584(14): 2965-2973. https://doi.org/10.1016/j.febslet.2010.05.028
  64. Odeyemi, I.S., Afolami, S.O. & Adigun, J.A. 2013. Plant parasitic nematode relative abundance and population suppression under Chromolaena odorata (Asteraceae) fallow. International Journal of Pest Management, 59(1): 79-88. https://doi.org/10.1080/09670874.2013.768630
  65. Owatworakit, A., Townsend, B., Louveau, T., Jenner, H., Rejzek, M., Hughes, R.K. … & Osbourn, A. 2013. Glycosyltransferases from oat (Avena) implicated in the acylation of avenacins. The Journal of Biological Chemistry, 288(6): 3696-3704. https://doi.org/10.1074/jbc.M112.420168
  66. Pannacci, E., Monni, V., Contini, G., Bravi, E. & Tei, F. 2025. Allelopathic activity of coriander (Coriandrum sativum L.). Journal of Plant Diseases and Protection, 132(2): 71. https://doi.org/10.1007/s41348-025-01064-7
  67. Patil, J.R., Mhatre, K.J., Yadav, K., Yadav, L.S., Srivastava, S. & Nikalje, G.C. 2024. Flavonoids in plant-environment interactions and stress responses. Discover Plants, 1(1): 1-19. https://doi.org/10.1007/s44154-023-00064-z
  68. Pezet, J. & Elkinton, J.S. 2014. Hemlock woolly adelgid (Hemiptera: Adelgidae) induces twig volatiles of eastern hemlock in a forest setting. Environmental Entomology, 43(5): 1275-1285. https://doi.org/10.1603/EN13237
  69. Ramadan, T., Amro, A. & Alazazi, S.M.A. 2018. Comparative allelopathic potential of ten field weeds against seed germination of three economic plants. Biological Forum – An International Journal, 10(1): 168-181.
  70. Reynolds, D.R. & Riley, J.R. 2002. Remote-sensing, telemetric and computer-based technologies for investigating insect movement: a survey of existing and potential techniques. Computers and Electronics in Agriculture, 35(2-3): 271-307. https://doi.org/10.1016/S0168-1699(02)00023-6
  71. Scavo, A., Abbate, C. & Mauromicale, G. 2019. Plant allelochemicals: Agronomic, nutritional and ecological relevance in the soil system. Plant and soil, 442: 23-48. https://doi.org/10.1007/s11104-019-03992-4
  72. Schulz, M., Marocco, A., Tabaglio, V., Macías, F.A. & Molinillo, J.M. 2013. Benzoxazinoids in rye allelopathy—from discovery to application in sustainable weed control and organic farming. Journal of Chemical Ecology, 39: 154-174. https://doi.org/10.1007/s10886-013-0270-6
  73. Singh, H.P., Batish, D.R. & Kohli, R.K. 2001. Allelopathy in agroecosystems: an overview. Journal of Crop Production, 4(2): 1-41. https://doi.org/10.1300/J144v04n02_01
  74. Tabaglio, V., Marocco, A. & Schulz, M. 2013. Allelopathic cover crop of rye for integrated weed control in sustainable agroecosystems. Italian Journal of Agronomy, 8(1): e5. https://doi.org/10.4081/ija.2013.e5
  75. Tanti, A., Bhattacharyya, P.N., Sandilya, S.P. & Dutta, P. 2016. Allelopathic potential of caffeine as growth and germination inhibitor to popular tea weed, Boreria hispida L., Current Life Science, 2(4): 114-117. https://doi.org/10.5281/zenodo.163671
  76. Tao, Y.Z., Hardy, A., Drenth, J., Henzell, R.G., Franzmann, B.A., Jordan, D.R., ... & McIntyre, C.L. 2003. Identifications of two different mechanisms for sorghum midge resistance through QTL mapping. Theoretical and Applied Genetics, 107: 116-122. https://doi.org/10.1007/s00122-003-1247-7
  77. Tlak Gajger, I. & Dar, S.A. 2021. Plant allelochemicals as sources of insecticides. Insects, 12(3): 189. https://doi.org/10.3390/insects12030189
  78. Tran, D.X., La, H.A., Do, T.K., Phung, T.T., Truong, N.M., Tran, D.K. & Khuat, H.T. 2016. Weed allelochemicals and possibility for pest management. International Letters of Natural Sciences, 56: 1-8. https://doi.org/10.18052/www.scipress.com/ILNS.56.1
  79. Vogt, T. 2010. Phenylpropanoid biosynthesis. Molecular Plant, 3(1): 2-20. https://doi.org/10.1093/mp/ssp106
  80. Walker, T.S., Bais, H.P., Grotewold, E. & Vivanco, J.M. 2003. Root exudation and rhizosphere biology. Plant Physiology, 132(1): 44-51. https://doi.org/10.1104/pp.102.018402
  81. Wang, M., Wu, C., Cheng, Z. & Meng, H. 2015. Growth and physiological changes in continuously cropped eggplant (Solanum melongena L.) upon relay intercropping with garlic (Allium sativum L.). Frontiers in Plant Science, 6: 262. https://doi.org/10.3389/fpls.2015.00262
  82. Wang, Q., Ruan, X., Li, Z.H. & Pan, C.D. 2006. Autotoxicity of plants and research of coniferous forest autotoxicity. Scientia Silvae Sinicae, 43: 134.
  83. War, A.R., Buhroo, A.A., Hussain, B., Ahmad, T., Nair, R.M. & Sharma, H.C. 2020. Plant defense and insect adaptation with reference to secondary metabolites. Co-evolution of Secondary Metabolites, 795-822.
  84. War, A.R., Sharma, S.P. & Sharma, H.C. 2016. Differential induction of flavonoids in groundnut in response to Helicoverpa armigera and Aphis craccivora infestation. International Journal of Insect Science, 8: IJIS-S39619. https://doi.org/10.4137/IJIS.S39619
  85. Weir, T.L., Park, S.W. & Vivanco, J.M. 2004. Biochemical and physiological mechanisms mediated by allelochemicals. Current Opinion in Plant Biology, 7(4): 472-479. https://doi.org/10.1016/j.pbi.2004.05.001
  86. Weston, L.A. & Duke, S.O. 2003. Weed and crop allelopathy. Critical Reviews in Plant Sciences, 22(3-4): 367-389. https://doi.org/10.1080/07352680390242449
  87. Weston, L.A., Alsaadawi, I.S. & Baerson, S.R. 2013. Sorghum allelopathy - from ecosystem to molecule. Journal of Chemical Ecology, 39: 142-153. https://doi.org/10.1007/s10886-013-0308-3
  88. Weston, L.A., Ryan, P.R. & Watt, M. 2012. Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. Journal of Experimental Botany, 63(9): 3445-3454. https://doi.org/10.1093/jxb/ers080
  89. Wink, M. 2003. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry, 64(1): 3-19. https://doi.org/10.1016/S0031-9422(03)00300-5
  90. Xu, Y., Chen, X., Ding, L. & Kong, C.-H. 2023. Allelopathy and allelochemicals in grasslands and forests. Forests, 14(3): 562. https://doi.org/10.3390/f14030562
  91. Yamazaki, M. 2022. Metabolic switch from lysine to alkaloid biosynthesis. Regulation of Plant Growth & Development, 57(2): 108-113. https://doi.org/10.18978/jscrp.57.2_108
  92. Young, G.P. & Bush, J.K. 2009. Assessment of the allelopathic potential of Juniperus ashei on germination and growth of Bouteloua curtipendula. Journal of Chemical Ecology, 35: 74-80. https://doi.org/10.1007/s10886-008-9586-6
  93. Zhang, S.Z., Li, Y.H., Kong, C.H. & Xu, X.H. 2016. Interference of allelopathic wheat with different weeds. Pest Management Science, 72(1): 172-178. https://doi.org/10.1002/ps.3980
  94. Zhu, X., Skoneczny, D., Weidenhamer, J.D., Mwendwa, J.M., Weston, P.A., Gurr, G.M. … & Weston, L.A. 2016. Identification and localization of bioactive naphthoquinones in the roots and rhizosphere of Paterson’s curse (Echium plantagineum L.), a noxious invader. Journal of Experimental Botany, 67(12): 3777-3788. https://doi.org/10.1093/jxb/erw173
DOI: https://doi.org/10.2478/contagri-2025-0022 | Journal eISSN: 2466-4774 | Journal ISSN: 0350-1205
Language: English
Submitted on: May 27, 2025
Accepted on: Aug 22, 2025
Published on: Oct 6, 2025
Published by: University of Novi Sad
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Jelena Golijan Pantović, published by University of Novi Sad
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT