Have a personal or library account? Click to login
Role of Proline in Mitigating the Deleterious Effects of Heat Stress in Chillies Cover

Role of Proline in Mitigating the Deleterious Effects of Heat Stress in Chillies

Open Access
|May 2021

References

  1. Abewoy D. (2018): Review on impacts of climate change on vegetable production and its management practices. Advances in Crop Science and Technology, 6(01): 1-7. DOI: 10.4172/2329-8863.100033010.4172/2329-8863.1000330
  2. Ahmed C.B., Magdich S., Rouina B., Sensoy S., Boukhris M., Abdullah F.B. (2011): Exogenous proline effects on water relations and ions contents in leaves and roots of young olive. Amino Acids, 40(2): 565-573.10.1007/s00726-010-0677-120617349
  3. Ali Q., Ashraf M., Athar H.U.R. (2007): Exogenously applied proline at different growth stages enhances growth of two maize cultivars grown under water deficit conditions. Pakistan Journal of Botany, 39(4): 1133-1144.
  4. Ashraf M.F.M.R. & Foolad M.R. (2007): Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2): 206-216.10.1016/j.envexpbot.2005.12.006
  5. Ashraf M.P.J.C. & Harris P.J.C. (2004): Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166(1): 3-16.10.1016/j.plantsci.2003.10.024
  6. Ashraf M., Saeed M.M., Qureshi M.J. (1994): Tolerance to high temperature in cotton (Gossypium hirsutum L.) at initial growth stages. Environmental and Experimental Botany, 34(3): 275-283.
  7. Bajaj S., Targolli J., Liu L.F., Ho T.H.D., Wu R. (1999): Transgenic approaches to increase dehydration-stress tolerance in plants. Molecular Breeding, 5(6): 493-503.10.1023/A:1009660413133
  8. Berke T., Black L.L., Talekar N.S., Wang J.F., Gniffke P., Green S.K., Wang T.C., Morris R. (2005): Suggested cultural practices for chilli pepper. AVRDC pub, 05-620.
  9. Butt M., Ayyub C.M., Amjad M., Ahmad R. (2016): Proline application enhances growth of chilli by improving physiological and biochemical attributes under salt stress. Pakistan Journal of Agricultural Sciences, 53(1): 43-49.10.21162/PAKJAS/16.4623
  10. Chaum S. & Kirdmanee C. (2010): Effect of glycine betaine on proline, water use, and photosynthetic efficiencies, and growth of rice seedlings under salt stress. Turkish Journal of Agriculture and Forestry, 34(6): 517-527.
  11. Crafts-Brandner S.J. & Salvucci M.E. (2000): Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proceedings of the National Academy of Sciences, 97(24): 13430-13435.10.1073/pnas.2304514972724111069297
  12. Cui L., Li J., Fan Y., Xu S., Zhang Z. (2006): High temperature effects on photosynthesis, PSII functionality and antioxidant activity of two Festuca arundinacea cultivars with different heat susceptibility. Botanical Studies, 47(1): 61-69.
  13. Erickson A.N. & Markhart A.H. (2002): Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant, Cell & Environment, 25(1): 123-130.10.1046/j.0016-8025.2001.00807.x
  14. Gadallah M.A.A. (1999). Effects of proline and glycinebetaine on Vicia faba responses to salt stress. Biologia Plantarum, 42(2): 249-257.
  15. Ghai N., Kau, J., Jindal S.K., Dhaliwal M.S., & Pahwa K. (2016): Physiological and biochemical response to higher temperature stress in hot pepper (Capsicum annuum L.). Journal of Applied and Natural Science, 8(3): 1133-1137.10.31018/jans.v8i3.930
  16. González-Zamora A., Sierra-Campos E., Luna-Ortega J.G., Pérez-Morales R., Ortiz J.C.R., García-Hernández J.L. (2013): Characterization of different capsicum varieties by evaluation of their capsaicinoids content by high performance liquid chromatography, determination of pungency and effect of high temperature. Molecules, 18(11): 13471-13486.10.3390/molecules181113471626980224184818
  17. GoP (2017): Pakistan economic survey. Ministry of Finance, Economic Advisor’s Wing, Islamabad.
  18. Hayat S., Hayat Q., Alyemeni M.N., Wani A.S., Pichtel J., Ahmad A. (2012): Role of proline under changing environments: a review. Plant Signaling & Behavior, 7(11): 1456-1466.10.4161/psb.21949
  19. Heuer B. (1994): Osmoregulatory role of proline in water and saltstressed plants. In: M. Pessarakli (Ed.), Handbook of plant and crop stress Marcel Dekker, New York, pp. 363-381.
  20. Heuer B. (2003): Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants. Plant Science, 165(4): 693-699.10.1016/S0168-9452(03)00222-X
  21. IPCC (2012): Managing the risks of extreme events and disasters to advance climate change adaptation. In special report of the inter-governmental panel on climate change. Cambridge university press.
  22. Itai C. & Paleg L.G. (1982): Responses of water-stressed Hordeum distichum L. and Cucumis sativus to proline and betaine. Plant Science Letters, 25(3): 329-335.10.1016/0304-4211(82)90163-8
  23. Jain M., Mathur G., Koul S., Sarin N. (2001): Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.). Plant Cell Reports, 20(5): 463-468.10.1007/s002990100353
  24. Lehmann S., Funck D., Szabados L., Rentsch D. (2010): Proline metabolism and transport in plant development. Amino Acids, 39(4): 949-962.10.1007/s00726-010-0525-320204435
  25. Liu X. & Huang B. (2000): Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Science, 40(2): 503-510.
  26. Makela P., Munns R., Colmer T.D., Condon A.G., Peltonen-Sainio P. (1998): Effect of foliar applications of glycinebetaine on stomatal conductance, abscisic acid and solute concentrations in leaves of salt-or drought-stressed tomato. Functional Plant Biology, 25(6): 655-663.10.1071/PP98024
  27. Mantri N., Patade V., Penna S., Ford R., Pang E. (2012): Abiotic stress responses in plants: present and future. In: Abiotic stress responses in plants, Springer, New York, NY, pp. 1-19.10.1007/978-1-4614-0634-1_1
  28. Mattioli R., Costantino P., Trovato M. (2009): Proline accumulation in plants: not only stress. Plant Signaling & Behavior, 4(11): 1016-1018.10.4161/psb.4.11.9797281950720009553
  29. Mukhtar I., Shahid M.A., Khan M.W., Balal R.M., Iqbal M.M., Naz T., Zubair M., Ali H.H. (2016): Improving salinity tolerance in chili by exogenous application of calcium and sulphur. Soil & Environment, 35(1): 56-64.
  30. Murmu K., Murmu S., Kundu C.K., Bera P.S. (2017): Exogenous proline and glycine betaine in plants under stress tolerance. International Journal of Current Microbiology and Applied Sciences, 6(9): 901-913.10.20546/ijcmas.2017.609.109
  31. Muslu A. & Ergun N. (2013): Effects of copper and chromium and high temperature on growth, proline and protein content in wheat seedlings. Bangladesh Journal of Botany, 42(1): 105-112.10.3329/bjb.v42i1.15871
  32. Nawaz K., Talat A., Iqra, Hussain K., Majeed A. (2010): Induction of salt tolerance in two cultivars of sorghum (Sorghum bicolor L.) by exogenous application of proline at seedling stage. World Applied Sciences Journal, 10(1): 93-99.
  33. Neto N.B.M., Custódio C.C, Gatti A.B., Priolli M.R., Cardoso V.J.M. (2004). Proline: use as an indicator of temperature stress in bean seeds. Crop Breeding and Applied Biotechnology, 4(3): 330-337.
  34. Nounjan N., Nghia P.T., Theerakulpisut P. (2012): Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. Journal of Plant Physiology, 169(6): 596-604.10.1016/j.jplph.2012.01.004
  35. Prasad P.V.V., Pisipati S.R., Ristic Z., Bukovnik U., Fritz A.K. (2008): Impact of nighttime temperature on physiology and growth of spring wheat. Crop Science, 48(6): 2372-2380.10.2135/cropsci2007.12.0717
  36. Rhodes D. & Hanson A.D. (1993): Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annual Review of Plant Biology, 44(1): 357-384.10.1146/annurev.pp.44.060193.002041
  37. Ristic Z., Bukovnik U., Prasad P.V.V. (2007): Correlation between heat stabilization of thylakoid membranes and loss of chlorophyll in winter wheat under heat stress. Crop Science, 47(5): 2067-2073.10.2135/cropsci2006.10.0674
  38. Sharma D.K., Andersen S.B., Ottosen C.O., Rosenqvist E. (2015): Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiologia Plantarum, 153(2): 284-298.10.1111/ppl.12245
  39. Sood S., Sood R., Sagar V., Sharma K. (2009): Genetic variation and association analysis for fruit yield, agronomic and quality characters in bell pepper. International Journal of Vegetable Science, 15(3): 272–284.10.1080/19315260902875822
  40. Steel R.G.D., Torrie J.H., Dickey D.A. (1997): Principles and Procedures of Statistics: A biometrical Approach. 3rd Edition, McGraw-Hill, New York.
  41. Sung D.Y., Kaplan F., Lee K.J., Guy C.L. (2003): Acquired tolerance to temperature extremes. Trends in Plant Science, 8(4): 179-87.10.1016/S1360-1385(03)00047-5
  42. Sweeney P., Danneberger K., Wang D., McBride M. (2001): Root weight, nonstructural carbohydrate content, and shoot density of high density creeping bent grass cultivars. HortScience, 36(2): 368–370.10.21273/HORTSCI.36.2.368
  43. Szabados L. & Savoure A. (2009): Proline: a multifunctional amino acid. Trends in Plant Science, 15(2): 89-97.
  44. Tarnizi A.H. & Marziah M. (1995): The influence of low temperature treatment on growth and proline accumulation in polyembryogenic cultures of oil palm (Elaeis guineensis J acq.). Elaeis, 7(2): 107-117.
  45. Urban J., Ingwers M., McGuire M.A., Teskey R.O. (2017): Stomatal conductance increases with rising temperature. Plant Signaling and Behavior, 12(8), e1356534. DOI: 10.1080/15592324.2017.135653410.1080/15592324.2017.1356534561615428786730
  46. Usman M.G., Rafi M.Y., Ismail M.R., Malek M.A., Latif M.A. (2015): Expression of target gene Hsp70 and membrane stability determine heat tolerance in chili pepper. Journal of the American Society for Horticultural Science, 140(2): 144–150.10.21273/JASHS.140.2.144
  47. Verbruggen N. & Hermans C. (2008): Proline accumulation in plants: a review. Amino Acids, 35(4): 753-759.10.1007/s00726-008-0061-618379856
  48. Wahid A. & Ghazanfar A. (2006): Possible involvement of some secondary metabolites in salt tolerance of sugarcane. Journal of Plant Physiology, 163(7): 723-730.10.1016/j.jplph.2005.07.00716616583
  49. Wang J.Q. & Cui H.W. (1996): Variation in free proline content of cucumber (Cucumis sativus L.) seedlings under low temperature stress. Rep. Cucurbit Genetics Cooperative, 19: 25–26.
  50. Zhou R., Yu X., Ottosen C.O., Rosenqvist E., Zhao L., Wang Y., Yu W., Zhao T., Wu Z. (2017): Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biology, 17: 24. DOI: 10.1186/s12870-017-0974-x10.1186/s12870-017-0974-x526429228122507
DOI: https://doi.org/10.2478/contagri-2021-0006 | Journal eISSN: 2466-4774 | Journal ISSN: 0350-1205
Language: English
Page range: 28 - 35
Submitted on: May 29, 2020
Accepted on: Nov 16, 2020
Published on: May 26, 2021
Published by: University of Novi Sad
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Shahbaz Akram, C.M. Ayyub, Muhammad Shahzad, Ali Shahzad, published by University of Novi Sad
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.