Have a personal or library account? Click to login
The relationship between Artificial Intelligence (AI) exposure and returns to education Cover

The relationship between Artificial Intelligence (AI) exposure and returns to education

By:
Open Access
|Dec 2024

References

  1. Acemoglu, D. (2021a). Harms of AI (Working Paper 29247). National Bureau of Economic Research. https://doi.org/10.3386/w29247
  2. Acemoglu, D. (2021b, May 20). AI’s Future Doesn’t Have to Be Dystopian. Boston Review. https://www.bostonreview.net/forum/ais-future-doesnt-have-to-be-dystopian/
  3. Acemoglu, D., & Autor, D. (2011). Skills, Tasks and Technologies: Implications for Employment and Earnings. In D. Card & O. Ashenfelter (Eds.), Handbook of Labor Economics (Vol. 4, pp. 1043–1171). Elsevier. https://doi.org/10.1016/S0169-7218(11)02410-5
  4. Acemoglu, D., Koster, H. R. A., & Ozgen, C. (2023). Robots and Workers: Evidence from the Netherlands (Working Paper 31009). National Bureau of Economic Research. https://doi.org/10.3386/w31009
  5. Acemoglu, D., & Restrepo, P. (2018). The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment. American Economic Review, 108(6), 1488–1542. https://doi.org/10.1257/aer.20160696
  6. Acemoglu, D., & Restrepo, P. (2019a). Automation and New Tasks: How Technology Displaces and Reinstates Labor. Journal of Economic Perspectives, 33(2), 3–30. https://doi.org/10.1257/jep.33.2.3
  7. Acemoglu, D., & Restrepo, P. (2019b). Robots and Jobs: Evidence from US Labor Markets. Journal of Political Economy, 128(6), 2188–2244. https://doi.org/10.1086/705716
  8. Acemoglu, D., & Restrepo, P. (2020). Unpacking Skill Bias: Automation and New Tasks. AEA Papers and Proceedings, 110, 356–361. https://doi.org/10.1257/pandp.20201063
  9. Acemoglu, D., & Restrepo, P. (2022). Tasks, Automation, and the Rise in U.S. Wage Inequality. Econometrica, 90(5), 1973–2016. https://doi.org/10.3982/ECTA19815
  10. Albinowski, M., & Lewandowski, P. (2024). The Impact of ICT and Robots on Labour Market Outcomes of Demographic Groups in Europe. Labour Economics, 87, 102481. https://doi.org/10.1016/j.labeco.2023.102481
  11. Alekseeva, L., Azar, J., Giné, M., Samila, S., & Taska, B. (2021). The Demand for AI Skills in the Labor Market. Labour Economics, 71, 102002. https://doi.org/10.1016/j.labeco.2021.102002
  12. Autor, D., Chin, C., Salomons, A., & Seegmiller, B. (2024). New Frontiers: The Origins and Content of New Work, 1940–2018*. The Quarterly Journal of Economics, 139(3), 1399–1465. https://doi.org/10.1093/qje/qjae008
  13. Autor, D. H., Katz, L. F., & Kearney, M. S. (2006). The Polarization of the U.S. Labor Market. American Economic Review, 96(2), 189–194. https://doi.org/10.1257/000282806777212620
  14. Autor, D., & Salomons, A. (2018). Is Automation Labor Share–Displacing? Productivity Growth, Employment, and the Labor Share. Brookings Papers on Economic Activity, 1–63.
  15. Borin, A., & Mancini, M. (2015). Follow the Value Added: Bilateral Gross Export Accounting. (Working Paper No, 1026). Bank of Italy Temi Di Discussione.
  16. Borin, A., & Mancini, M. (2019). Measuring What Matters in Global Value Chains and Value-Added Trade (Working Paper). World Bank. https://doi.org/10.1596/1813-9450-8804
  17. Brynjolfsson, E., & McAfee, A. (2014). The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies (p. 306). W. W. Norton & Co.
  18. Brynjolfsson, E., & Mitchell, T. (2017). What Can Machine Learning Do? Workforce Implications. Science, 358(6370), 1530–1534. https://doi.org/10.1126/science.aap8062
  19. Brynjolfsson, E., Mitchell, T., & Rock, D. (2018). What Can Machines Learn and What Does It Mean for Occupations and the Economy? AEA Papers and Proceedings, 108, 43–47. https://doi.org/10.1257/pandp.20181019
  20. DeCanio, S. J. (2016). Robots and Humans – Complements or Substitutes? Journal of Macroeconomics, 49, 280–291. https://doi.org/10.1016/j.jmacro.2016.08.003
  21. Engberg, E., Koch, M., Lodefalk, M., & Schroeder, S. (2023). Artificial Intelligence, Tasks, Skills and Wages: Worker-Level Evidence from Germany. https://cms.ratio.se/app/uploads/2023/12/wp-371-ai-and-tasks.pdf
  22. Felten, E., Raj, M., & Seamans, R. (2021). Occupational, Industry, and Geographic Exposure to Artificial Intelligence: A Novel Dataset and Its Potential Uses. Strategic Management Journal, 42(12), 2195–2217. https://doi.org/10.1002/smj.3286
  23. Felten, E. W., Raj, M., & Seamans, R. (2018). A Method to Link Advances in Artificial Intelligence to Occupational Abilities. AEA Papers and Proceedings, 108, 54–57. https://doi.org/10.1257/pandp.20181021
  24. Fossen, F. M., Samaan, D., & Sorgner, A. (2022). How Are Patented AI, Software and Robot Technologies Related to Wage Changes in the United States? Frontiers in Artificial Intelligence, 5. https://www.frontiersin.org/articles/10.3389/frai.2022.869282
  25. Frey, C. B., & Osborne, M. A. (2017). The Future of Employment: How Susceptible Are Jobs to Computerisation? Technological Forecasting and Social Change, 114, 254–280. https://doi.org/10.1016/j.techfore.2016.08.019
  26. Georgieff, A., & Hyee, R. (2021). Artificial Intelligence and Employment: New Cross-Country Evidence. OECD. https://doi.org/10.1787/c2c1d276-en
  27. Goos, M., Manning, A., & Salomons, A. (2014). Explaining Job Polarization: Routine-Biased Technological Change and Offshoring. The American Economic Review, 104(8), 2509–2526. https://doi.org/10.1257/aer.104.8.2509
  28. Graetz, G., & Michaels, G. (2018). Robots at Work. The Review of Economics and Statistics, 100(5), 753–768. https://doi.org/10.1162/rest_a_00754
  29. Green, A. (2023). Artificial Intelligence and Jobs: No Signs of Slowing Labour Demand (yet). OECD. https://doi.org/10.1787/9c86de40-en
  30. Green, A., & Lamby, L. (2023). The Supply, Demand and Characteristics of the AI Workforce Across OECD Countries. OECD. https://doi.org/10.1787/bb17314a-en
  31. Gregory, T., Salomons, A., & Zierahn, U. (2022). Racing With or Against the Machine? Evidence on the Role of Trade in Europe. Journal of the European Economic Association, 20(2), 869–906. https://doi.org/10.1093/jeea/jvab040
  32. Growiec, J. (2023). Industry 4.0? Framing the Digital Revolution and Its Long-Run Growth Consequences. Gospodarka Narodowa. The Polish Journal of Economics, 316(4), 1–16. https://doi.org/10.33119/GN/175243
  33. Jerbashian, V. (2021). Trade in Information Technologies and Changes in the Demand for Occupations. China Economic Review, 67, 101603. https://doi.org/10.1016/j.chieco.2021.101603
  34. Johnson, S., & Acemoglu, D. (2023). Power and Progress: Our Thousand-Year Struggle Over Technology and Prosperity. Hachette UK.
  35. Lane, M., & Saint-Martin, A. (2021). The impact of Artificial Intelligence on the Labour Market: What Do We Know So Far? OECD. https://doi.org/10.1787/7c895724-en
  36. Lenzen, M., Kanemoto, K., Moran, D., & Geschke, A. (2012). Mapping the Structure of the World Economy. Environmental Science & Technology, 46(15), 8374–8381. https://doi.org/10.1021/es300171x
  37. Lenzen, M., Moran, D., Kanemoto, K., & Geschke, A. (2013). Building EORA: A Global Multi-Region Input–Output Database at High Country and Sector Resolution. Economic Systems Research, 25(1), 20–49. https://doi.org/10.1080/09535314.2013.769938
  38. Michaels, G., Natraj, A., & Van Reenen, J. (2014). Has ICT Polarized Skill Demand? Evidence from Eleven Countries over Twenty-Five Years. The Review of Economics and Statistics, 96(1), 60–77. https://doi.org/10.1162/REST_a_00366
  39. Parteka, A., Wolszczak-Derlacz, J., & Nikulin, D. (2024). How Digital Technology Affects Working Conditions in Globally Fragmented Production Chains: Evidence from Europe. Technological Forecasting and Social Change, 198, 122998. https://doi.org/10.1016/j.techfore.2023.122998
  40. Phillips, S. (2020). Working through the Pandemic: Accelerating the Transition to Remote Working. Business Information Review, 37(3), 129–134. https://doi.org/10.1177/0266382120953087
  41. Webb, M. (2020). The Impact of Artificial Intelligence on the Labor Market. http://dx.doi.org/10.2139/ssrn.3482150
DOI: https://doi.org/10.2478/ceej-2024-0029 | Journal eISSN: 2543-6821 | Journal ISSN: 2544-9001
Language: English
Published on: Dec 31, 2024
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2024 Karol Madoń, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.