Have a personal or library account? Click to login
A Study on Methodology of Tracing Historical Concrete Information Cover

A Study on Methodology of Tracing Historical Concrete Information

Open Access
|Dec 2025

References

  1. Xu, D., Cui, Y., Li, H., Yang, K., Xu, W. & Chen, Y. (2015). On the future of Chinese cement industry. Cement and Concrete Research 78:2–13. https://doi.org/10.1016/j.cemconres.2015.06.012
  2. Tang, S. W., Yao, Y., Andrade, C. & Li, Z. J. (2015). Recent durability studies on concrete structure. Cement and Concrete Research 78:143–154. https://doi.org/10.1016/j.cemconres.2015.05.021
  3. Du, Q. & Qiu, B. (2021). A study of the history of concrete technology introduction in China. In History of Construction Cultures, vol 2, pp 688–694. https://doi.org/10.1201/9781003173434-202
  4. Elwi, M., Raid, I., K. & Mohammed Al-Alusi, M. R. (2024). Enhancing sustainability in construction: Numerical investigation on green concrete beams strengthened with composite strips. Civil and Environmental Engineering, 21(1), 349–358. https://doi.org/10.2478/cee-2025-0027
  5. Hameed, O. M., Usman, F., Hayder, G. & Al-Ani, Y. (2024). Evaluation of eco-friendly nano clay in concrete mix design. Civil and Environmental Engineering, 21(1), 671–679. https://doi.org/10.2478/cee-2025-0050
  6. Biernacki, J. J., Bullard, J. W. & Sant, G. (2017). Cements in the 21st century: challenges, perspectives, and opportunities. Journal of the American Ceramic Society 100(7):2746–2773. https://doi.org/10.1111/jace.14948
  7. Borg, R. P. (2017). Concrete heritage: challenges in conservation. In: Borg RP (ed) Concrete heritage: challenges in conservation, pp 35–52. https://doi.org/10.1016/j.cemconcomp.2006.05.008
  8. Li, C., Li, J., Ren, Q., Zheng, Q. & Jiang, Z. (2023). Durability of concrete coupled with life cycle assessment: review and perspective. Cement and Concrete Composites 139:105041. https://doi.org/10.1016/j.cemconcomp.2023.105041
  9. Ishikawa, M. (2021). Tsukagoshi M, Kasano H, Nishino H, Influence of composition and surface discoloration of concrete on active thermographic nondestructive inspection. Measurement 168:108395. https://doi.org/10.1016/j.measurement.2020.108395
  10. Lopez-Miguel, A., Cabello-Mendez, J. A., Moreno-Valdes, A., Perez-Quiroz, J. T. & Machorro-Lopez, J. M. (2024). Non-Destructive Testing of Concrete Materials from Piers: Evaluating Durability Through a Case Study. NDT, 2(4), 532-548. https://doi.org/10.3390/ndt2040033
  11. Baudrit, C., Dufau, S., Villain, G. & Sbartaï, Z. M. (2025). Artificial Intelligence and Non-Destructive Testing Data to Assess Concrete Sustainability of Civil Engineering Infrastructures. Materials, 18(4), 826. https://doi.org/10.3390/ma18040826
  12. Kim, J., Park, K. T. & Yoon, J. (2025). Performance-based durability assessment of low carbon concrete using electrical resistivity. International Journal of Concrete Structures and Materials, 19, 64. https://doi.org/10.1186/s40069-025-00806-z
  13. Flores-Nicolás, A., Flores-Nicolás, M., Menchaca-Campos, E. C. & Uruchurtu-Chavarín, J. (2024). Study on corrosion of reinforced concrete with synthetic fiber using electrochemical noise technique. Civil and Environmental Engineering, 21(1), 271–281. https://doi.org/10.2478/cee-2025-0021
  14. Flores-Nicolás, A., Menchaca-Campos, E. C., Flores-Nicolás, M., Gonzalez-Noriega, O. A., García-Peréz, C. A. & Uruchurtu-Chavarín, J. (2024). Corrosion resistance of reinforcing steel in concrete using natural fibers treated with used engine oil. Civil Engineering Journal, 10(4), 1012–1024. https://doi.org/10.28991/CEJ-2024-010-04-02
  15. Hussain, A. (2017). Review of non-destructive tests for evaluation of historic masonry and concrete structures. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-017-2437-y
  16. Hu, J. Y., Zhang, S. S., Chen, E. & Li, W.G. (2022). A review on corrosion detection and protection of existing reinforced concrete (RC) structures. Construction and Building Materials 325:126718. https://doi.org/10.1016/j.conbuildmat.2022.126718
  17. Gamil, Y. (2023). Machine learning in concrete technology: A review of current researches, trends, and applications. Frontiers in Built Environment, 9. https://doi.org/10.3389/fbuil.2023.1145591
  18. Varghese, S., Anand, R. & Paliwal, G. (2024). Physics-informed neural network for concrete manufacturing process optimization. arXiv. https://doi.org/10.48550/arXiv.2408.14502
  19. Soleymani, A., Jahangir, H. & Nehdi, M. L. (2023). Damage detection and monitoring in heritage masonry structures: systematic review. Construction and Building Materials 397:132402. https://doi.org/10.1016/j.conbuildmat.2023.132402
  20. Alexander, M. & Beushausen, H. (2019) Durability, service life prediction, and modelling for reinforced concrete structures – review and critique. Cement and Concrete Research 122:17–29. https://doi.org/10.1016/j.cemconres.2019.04.018
  21. Grazuleviciute-Vileniske, I., Seduikyte, L. & Daugelaite, A. (2021). Links between heritage building, historic urban landscape and sustainable development: systematic approach. Landscape Architecture and Art. https://doi.org/10.22616/j.landarchart.2020.17.04
  22. Lou, W., Wu, L., Mao, Y. & Sun, K. (2017). Precipitation and temperature trends and dryness/wetness pattern during 1971–2015 in Zhejiang Province, southeastern China. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-017-2134-5
  23. Jedidi, M., Benjeddou, O. & Soussi, C. (2020). Effect of water-cement ratio, cement dosage, type of cement, and curing process on the depth of carbonation of concrete. Stavební Obzor - Civil Engineering Journal 3(3):333–346. https://doi.org/10.14311/CEJ.2020.03.0030
  24. Vu, C. C., Plé, O., Weiss, J. & Amitrano, D. (2020). Revisiting the concept of characteristic compressive strength of concrete. Construction and Building Materials 263:120126. https://doi.org/10.1016/j.conbuildmat.2020.120126
  25. Sugiyama, T. & Promentilla, M. A. B. (2021). Advancing concrete durability research through X-ray computed tomography. Journal of Advanced Concrete Technology 19(6):730–755. https://doi.org/10.3151/jact.19.730
  26. Sisomphon, K. (2009). A chemical analysis method for determining blast-furnace slag content in hardened concrete. Construction and Building Materials 23(1):54–61. https://doi.org/10.1016/j.conbuildmat.2008.02.003
  27. Guan, J., Song, Z., Zhang, M., Yao, X., Li, L. & Hu, S. (2021). Concrete fracture considering aggregate grading. Theoretical and Applied Fracture Mechanics 112:102833. https://doi.org/10.1016/j.tafmec.2020.102833
  28. Li, Y., Mu, J., Wang, F., Wang, X. & Ding, Q. (2024). Research on the effect of apparent density on the rheological properties of lightweight and heavyweight concrete. Journal of Building Engineering 95:110111. https://doi.org/10.1016/j.jobe.2024.110111
  29. Zhang, D., Li, K. (2019). Concrete gas permeability from different methods: correlation analysis. Cement and Concrete Composites 104:103379. https://doi.org/10.1016/j.cemconcomp.2019.103379
  30. Zhou, L., Jin, N. & Fu, C. (2018). Measurement of oxygen diffusion coefficient in cement-based materials. Experimental Technology and Management 35(7):117–120. https://doi.org/10.16791/j.cnki.sjg.2018.07.028
  31. Sercombe, J., Vidal, R., Gallé, C. & Adenot, F. (2007). Experimental study of gas diffusion in cement paste. Cement and Concrete Research 37(4):579–588. https://doi.org/10.1016/j.cemconres.2006.12.003
  32. Monteiro, P. J. M., Geng, G., Marchon, D., Li, J., Alapati, P., Kurtis, K. E. & Abdolhosseini Qomi, M. J. (2019). Advances in characterizing and understanding the microstructure of cementitious materials. Cement and Concrete Research 124:105806. https://doi.org/10.1016/j.cemconres.2019.105806
  33. Chen, W., Li, K., Wu, M., Liu, D., Wang, P. & Liang, Y. (2023). Influence of pore structure characteristics on the gas permeability of concrete. Journal of Building Engineering 79:107852. https://doi.org/10.1016/j.jobe.2023.107852
  34. Sun, X., Zhang, B., Dai, Q. & Yu, X. (2015). Investigation of internal curing effects on microstructure and permeability of interface transition zones in cement mortar with SEM imaging, transport simulation and hydration modeling techniques. Construction and Building Materials 76:366–379. https://doi.org/10.1016/j.conbuildmat.2014.12.014
  35. Xiao, J., Lv, Z., Duan, Z. & Zhang, C. (2023). Pore structure characteristics, modulation and its effect on concrete properties: a review. Construction and Building Materials 397:132430. https://doi.org/10.1016/j.conbuildmat.2023.132430
  36. Flores-Nicolás, A., Flores-Nicolas, M. & Uruchurtu-Chavarin, J. (2021). Corrosion effect on reinforced concrete with the addition of graphite powder and its evaluation on physical-electrochemical properties. Revista ALCONPAT, 11(1), 18–33. https://doi.org/10.21041/ra.v11i1.501
  37. Tong, Y., Li, Z., Li, M., Wang, J., Seiboub, A. O. & Ye, J. (2022). Study on effect of pore structure on the permeability of concrete after a century natural carbonation. Journal of Asian Architecture and Building Engineering. Advance online publication. https://doi.org/10.1080/13467581.2022.2160642
  38. Flores-Nicolás, A., Flores-Nicolas, M., Menchaca-Campos, E. C. & Uruchurtu-Chavarín, J. (2025). Mechanical behavior of concrete reinforced with natural palm and mango fibers. Journal of Engineering and Technological Sciences, 57(1), 48–65. https://doi.org/10.5614/j.eng.technol.sci.2025.57.1.4
DOI: https://doi.org/10.2478/cee-2026-0053 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Submitted on: Sep 15, 2025
Accepted on: Oct 9, 2025
Published on: Dec 9, 2025
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Yunyun Tong, Wannian Chen, Zhixiang Li, Qiannan Wang, Wenfang Zhu, Mengya Li, Jiong Wang, Chi Zhang, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT