References
- Xu, D., Cui, Y., Li, H., Yang, K., Xu, W. & Chen, Y. (2015). On the future of Chinese cement industry. Cement and Concrete Research 78:2–13. https://doi.org/10.1016/j.cemconres.2015.06.012
- Tang, S. W., Yao, Y., Andrade, C. & Li, Z. J. (2015). Recent durability studies on concrete structure. Cement and Concrete Research 78:143–154. https://doi.org/10.1016/j.cemconres.2015.05.021
- Du, Q. & Qiu, B. (2021). A study of the history of concrete technology introduction in China. In History of Construction Cultures, vol 2, pp 688–694. https://doi.org/10.1201/9781003173434-202
- Elwi, M., Raid, I., K. & Mohammed Al-Alusi, M. R. (2024). Enhancing sustainability in construction: Numerical investigation on green concrete beams strengthened with composite strips. Civil and Environmental Engineering, 21(1), 349–358. https://doi.org/10.2478/cee-2025-0027
- Hameed, O. M., Usman, F., Hayder, G. & Al-Ani, Y. (2024). Evaluation of eco-friendly nano clay in concrete mix design. Civil and Environmental Engineering, 21(1), 671–679. https://doi.org/10.2478/cee-2025-0050
- Biernacki, J. J., Bullard, J. W. & Sant, G. (2017). Cements in the 21st century: challenges, perspectives, and opportunities. Journal of the American Ceramic Society 100(7):2746–2773. https://doi.org/10.1111/jace.14948
- Borg, R. P. (2017). Concrete heritage: challenges in conservation. In: Borg RP (ed) Concrete heritage: challenges in conservation, pp 35–52. https://doi.org/10.1016/j.cemconcomp.2006.05.008
- Li, C., Li, J., Ren, Q., Zheng, Q. & Jiang, Z. (2023). Durability of concrete coupled with life cycle assessment: review and perspective. Cement and Concrete Composites 139:105041. https://doi.org/10.1016/j.cemconcomp.2023.105041
- Ishikawa, M. (2021). Tsukagoshi M, Kasano H, Nishino H, Influence of composition and surface discoloration of concrete on active thermographic nondestructive inspection. Measurement 168:108395. https://doi.org/10.1016/j.measurement.2020.108395
- Lopez-Miguel, A., Cabello-Mendez, J. A., Moreno-Valdes, A., Perez-Quiroz, J. T. & Machorro-Lopez, J. M. (2024). Non-Destructive Testing of Concrete Materials from Piers: Evaluating Durability Through a Case Study. NDT, 2(4), 532-548. https://doi.org/10.3390/ndt2040033
- Baudrit, C., Dufau, S., Villain, G. & Sbartaï, Z. M. (2025). Artificial Intelligence and Non-Destructive Testing Data to Assess Concrete Sustainability of Civil Engineering Infrastructures. Materials, 18(4), 826. https://doi.org/10.3390/ma18040826
- Kim, J., Park, K. T. & Yoon, J. (2025). Performance-based durability assessment of low carbon concrete using electrical resistivity. International Journal of Concrete Structures and Materials, 19, 64. https://doi.org/10.1186/s40069-025-00806-z
- Flores-Nicolás, A., Flores-Nicolás, M., Menchaca-Campos, E. C. & Uruchurtu-Chavarín, J. (2024). Study on corrosion of reinforced concrete with synthetic fiber using electrochemical noise technique. Civil and Environmental Engineering, 21(1), 271–281. https://doi.org/10.2478/cee-2025-0021
- Flores-Nicolás, A., Menchaca-Campos, E. C., Flores-Nicolás, M., Gonzalez-Noriega, O. A., García-Peréz, C. A. & Uruchurtu-Chavarín, J. (2024). Corrosion resistance of reinforcing steel in concrete using natural fibers treated with used engine oil. Civil Engineering Journal, 10(4), 1012–1024. https://doi.org/10.28991/CEJ-2024-010-04-02
- Hussain, A. (2017). Review of non-destructive tests for evaluation of historic masonry and concrete structures. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-017-2437-y
- Hu, J. Y., Zhang, S. S., Chen, E. & Li, W.G. (2022). A review on corrosion detection and protection of existing reinforced concrete (RC) structures. Construction and Building Materials 325:126718. https://doi.org/10.1016/j.conbuildmat.2022.126718
- Gamil, Y. (2023). Machine learning in concrete technology: A review of current researches, trends, and applications. Frontiers in Built Environment, 9. https://doi.org/10.3389/fbuil.2023.1145591
- Varghese, S., Anand, R. & Paliwal, G. (2024). Physics-informed neural network for concrete manufacturing process optimization. arXiv. https://doi.org/10.48550/arXiv.2408.14502
- Soleymani, A., Jahangir, H. & Nehdi, M. L. (2023). Damage detection and monitoring in heritage masonry structures: systematic review. Construction and Building Materials 397:132402. https://doi.org/10.1016/j.conbuildmat.2023.132402
- Alexander, M. & Beushausen, H. (2019) Durability, service life prediction, and modelling for reinforced concrete structures – review and critique. Cement and Concrete Research 122:17–29. https://doi.org/10.1016/j.cemconres.2019.04.018
- Grazuleviciute-Vileniske, I., Seduikyte, L. & Daugelaite, A. (2021). Links between heritage building, historic urban landscape and sustainable development: systematic approach. Landscape Architecture and Art. https://doi.org/10.22616/j.landarchart.2020.17.04
- Lou, W., Wu, L., Mao, Y. & Sun, K. (2017). Precipitation and temperature trends and dryness/wetness pattern during 1971–2015 in Zhejiang Province, southeastern China. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-017-2134-5
- Jedidi, M., Benjeddou, O. & Soussi, C. (2020). Effect of water-cement ratio, cement dosage, type of cement, and curing process on the depth of carbonation of concrete. Stavební Obzor - Civil Engineering Journal 3(3):333–346. https://doi.org/10.14311/CEJ.2020.03.0030
- Vu, C. C., Plé, O., Weiss, J. & Amitrano, D. (2020). Revisiting the concept of characteristic compressive strength of concrete. Construction and Building Materials 263:120126. https://doi.org/10.1016/j.conbuildmat.2020.120126
- Sugiyama, T. & Promentilla, M. A. B. (2021). Advancing concrete durability research through X-ray computed tomography. Journal of Advanced Concrete Technology 19(6):730–755. https://doi.org/10.3151/jact.19.730
- Sisomphon, K. (2009). A chemical analysis method for determining blast-furnace slag content in hardened concrete. Construction and Building Materials 23(1):54–61. https://doi.org/10.1016/j.conbuildmat.2008.02.003
- Guan, J., Song, Z., Zhang, M., Yao, X., Li, L. & Hu, S. (2021). Concrete fracture considering aggregate grading. Theoretical and Applied Fracture Mechanics 112:102833. https://doi.org/10.1016/j.tafmec.2020.102833
- Li, Y., Mu, J., Wang, F., Wang, X. & Ding, Q. (2024). Research on the effect of apparent density on the rheological properties of lightweight and heavyweight concrete. Journal of Building Engineering 95:110111. https://doi.org/10.1016/j.jobe.2024.110111
- Zhang, D., Li, K. (2019). Concrete gas permeability from different methods: correlation analysis. Cement and Concrete Composites 104:103379. https://doi.org/10.1016/j.cemconcomp.2019.103379
- Zhou, L., Jin, N. & Fu, C. (2018). Measurement of oxygen diffusion coefficient in cement-based materials. Experimental Technology and Management 35(7):117–120. https://doi.org/10.16791/j.cnki.sjg.2018.07.028
- Sercombe, J., Vidal, R., Gallé, C. & Adenot, F. (2007). Experimental study of gas diffusion in cement paste. Cement and Concrete Research 37(4):579–588. https://doi.org/10.1016/j.cemconres.2006.12.003
- Monteiro, P. J. M., Geng, G., Marchon, D., Li, J., Alapati, P., Kurtis, K. E. & Abdolhosseini Qomi, M. J. (2019). Advances in characterizing and understanding the microstructure of cementitious materials. Cement and Concrete Research 124:105806. https://doi.org/10.1016/j.cemconres.2019.105806
- Chen, W., Li, K., Wu, M., Liu, D., Wang, P. & Liang, Y. (2023). Influence of pore structure characteristics on the gas permeability of concrete. Journal of Building Engineering 79:107852. https://doi.org/10.1016/j.jobe.2023.107852
- Sun, X., Zhang, B., Dai, Q. & Yu, X. (2015). Investigation of internal curing effects on microstructure and permeability of interface transition zones in cement mortar with SEM imaging, transport simulation and hydration modeling techniques. Construction and Building Materials 76:366–379. https://doi.org/10.1016/j.conbuildmat.2014.12.014
- Xiao, J., Lv, Z., Duan, Z. & Zhang, C. (2023). Pore structure characteristics, modulation and its effect on concrete properties: a review. Construction and Building Materials 397:132430. https://doi.org/10.1016/j.conbuildmat.2023.132430
- Flores-Nicolás, A., Flores-Nicolas, M. & Uruchurtu-Chavarin, J. (2021). Corrosion effect on reinforced concrete with the addition of graphite powder and its evaluation on physical-electrochemical properties. Revista ALCONPAT, 11(1), 18–33. https://doi.org/10.21041/ra.v11i1.501
- Tong, Y., Li, Z., Li, M., Wang, J., Seiboub, A. O. & Ye, J. (2022). Study on effect of pore structure on the permeability of concrete after a century natural carbonation. Journal of Asian Architecture and Building Engineering. Advance online publication. https://doi.org/10.1080/13467581.2022.2160642
- Flores-Nicolás, A., Flores-Nicolas, M., Menchaca-Campos, E. C. & Uruchurtu-Chavarín, J. (2025). Mechanical behavior of concrete reinforced with natural palm and mango fibers. Journal of Engineering and Technological Sciences, 57(1), 48–65. https://doi.org/10.5614/j.eng.technol.sci.2025.57.1.4
