References
- Badri D.V., Vivanco J.M., 2009. Regulation and function of root exudates. Plant, Cell & Environment, 32(6),
https://doi.org/10.1111/J.1365-3040.2008.01926.X . - Baldi E., 2021. Soil–plant interaction: effects on plant growth and soil biodiversity. Agronomy, 11, 2378,
https://doi.org/10.3390/AGRONOMY11122378 . - Bandyopadhyay S., Maiti S.K., 2021. Different Soil Factors Influencing Dehydrogenase Activity in Mine Degraded Lands – State-of-Art Review. Water, Air, and Soil Pollution, 232(9): 1–17,
https://doi.org/10.1007/S11270-021-05302-0/TABLES/1 . - Barros-Rodríguez A., Rangseekaew P., Lasudee K., Pathom-Aree W., Manzanera M., 2021. Impacts of agriculture on the environment and soil microbial biodiversity. Plants, 10, 2325,
https://doi.org/10.3390/PLANTS10112325 . - Basri H., Syakur S., Azmeri A., Fatimah E., 2022. Floods and their problems: Land uses and soil types perspectives. IOP Conference Series: Earth and Environmental Science, 951(1), 012111,
https://doi.org/10.1088/1755-1315/951/1/012111 . - Bastida F., Eldridge D.J., García C., Kenny Png G., Bardgett R.D., Delgado-Baquerizo M., 2021. Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes. The ISME Journal, 15(7): 2081–2091,
https://doi.org/10.1038/S41396-021-00906-0 . - Batool M., Carvalhais L.C., Fu B., Schenk P.M., 2024. Customized plant microbiome engineering for food security. Trends in Plant Science, 29(4): 482–494,
https://doi.org/10.1016/J.TPLANTS.2023.10.012/ASSET/5FA6640F-7D68-4672-B799-4A0395ECB76B/MAIN.ASSETS/GR2.JPG . - Bispo T.M., Vieira E.A., 2022. Assimilatory deficit and energy regulation in young Handroanthus chrysotrichus plants under flooding stress. Journal of Plant Research, 135(2): 323–336,
https://doi.org/10.1007/S10265-022-01370-3/FIGURES/7 . - Campdelacreu Rocabruna P., Domene X., Preece C., Peñuelas J., 2024. Relationship among soil biophysicochemical properties, agricultural practices and climate factors influencing soil phosphatase activity in agricultural land. Agriculture, 14(2), 288,
https://doi.org/10.3390/AGRICULTURE14020288/S1 . - Casida L.E., 1977. Microbial metabolic activity in soil as measured by dehydrogenase determinations. Applied and Environmental Microbiology, 34(6), 630,
https://doi.org/10.1128/AEM.34.6.630-636.1977 . - Casida L., Klein D., Santoro T., 1964. Soil dehydrogenase activity. Soil Science, 98: 371–376,
https://journals.lww.com/soilsci/Citation/1964/12000/SOIL_DEHYDROGENASE_ACTIVITY.4.aspx . - Chen M., Chen B., Marschner P., 2008. Plant growth and soil microbial community structure of legumes and grasses grown in monoculture or mixture. Journal of Environmental Sciences, 20(10): 1231–1237,
https://doi.org/10.1016/S1001-0742(08)62214-7 . - Chmura K., Chylińska E., Dmowski Z., Nowak L., 2009. Role of the water factor in yield formation of chosen field crops. Infrastructure and Ecology of Rural Areas, 9: 33–44. (in Polish + summary in English)
- Czaban J., Wróblewska B., Niedźwiecki J., Sułek A., 2010. Relationships between numbers of microbial communities in Polish agricultural soils and properties of these soils, paying special attention to xerophilic/xerotolerant fungi. Polish Journal of Environmental Studies, 19(6): 1171–1183.
- Das A.K., Lee D.-S., Woo Y.-J., Sultana S., Mahmud A., Yun B.-W., 2025. The impact of flooding on soil microbial communities and their functions: a review. Stresses, 5(2), 30,
https://doi.org/10.3390/stresses5020030 . - Datt N., Singh D., 2019. Enzymes in relation to soil biological properties and sustainability. In: Sustainable Management of Soil and Environment; (eds) Meena R., Kumar S., Bohra J., Jat M.; Springer, Singapore,
https://doi.org/10.1007/978-981-13-8832-3_11 . - Davidson E.A., Janssens I.A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 7081: 165–173,
https://doi.org/10.1038/nature04514 . - Furtak K., Gałązka A., 2019a. Enzymatic activity as a popular parameter used to determine the quality of the soil environment. Polish Journal of Agronomy, 37: 22–30,
https://doi.org/10.26114/pja.iung.385.2019.37.04 . - Furtak K., Gałązka A., 2019b. Edaphic factors and their influence on microbiological biodiversity of the soil environment. Advancements of Microbiology, 58(4): 375–384,
https://doi.org/https://doi.org/10.21307/PM-2019.58.4.375 . - Furtak K., Gałązka A., Niedźwiecki J., 2020a. Changes in soil enzymatic activity caused by hydric stress. Polish Journal of Environmental Studies, 29, 4, 1–8, 10.15244/pjoes/112896.
- Furtak K., Grządziel J., Gałązka A., Niedźwiecki J., 2020b. Prevalence of unclassified bacteria in the soil bacterial community from floodplain meadows (fluvisols) under simulated flood conditions revealed by a metataxonomic approachss. Catena, 188,
https://doi.org/10.1016/j.catena.2019.104448 . - Furtak K., Grządziel J., Gałązka A., Niedźwiecki J., 2019. Analysis of soil properties, bacterial community composition, and metabolic diversity in fluvisols of a floodplain area. Sustainability, 11, 14, 3929,
https://doi.org/10.3390/su11143929 . - Furtak K., Wolińska A., 2023. The impact of extreme weather events as a consequence of climate change on the soil moisture and on the quality of the soil environment and agriculture – A review. Catena, 231, 107378,
https://doi.org/10.1016/j.catena.2023.107378 . - Francioli D., Cid G., Kanukollu S., Ulrich A., Hajirezaei M.R., Kolb S., 2021. Flooding causes dramatic compositional shifts and depletion of putative beneficial bacteria on the spring wheat microbiota. Frontiers of Microbiology, 12, 773116, doi: 10.3389/fmicb.2021.773116.
- Gałązka A., Furtak K., 2019. Functional Microbial Diversity in Context to Agriculture. In Microbial Diversity in the Genomic Era, pp. 347–358, Elsevier,
https://doi.org/10.1016/b978-0-12-814849-5.00020-4 . - Geng Y., Wang D., Yang W., 2017. Effects of different inundation periods on soil enzyme activity in riparian zones in Lijiang. Catena, 149(1): 19–27,
https://doi.org/10.1016/j.catena.2016.08.004 . - González Macé O., Steinauer K., Jousset A., Eisenhauer N., Scheu S., 2016. Flood-induced changes in soil microbial functions as modified by plant diversity. PLOS ONE, 11(11), e0166349,
https://doi.org/10.1371/journal.pone.0166349 . - Gough H.L., Stahl D.A., 2011. Microbial community structures in anoxic freshwater lake sediment along a metal contamination gradient. The ISME Journal, 5(3): 543–558,
https://doi.org/10.1038/ismej.2010.132 . - Gu C., Zhang S., Han P., Hu X., Xie L., Li Y., Brooks M., Liao X., Qin L., 2019. Soil enzyme activity in soils subjected to flooding and the effect on nitrogen and phosphorus uptake by oilseed rape. Frontiers of Plant Science, 10, 368, doi: 10.3389/fpls.2019.00368.
- Gu Y., Wag P., Kong C., 2009. Urease, invertase, dehydrogenase and polyphenoloxidase activities in paddy soils influenced by allelopathic rice variety. European Journal of Soil Biology, 45: 436–441.
- Huang Q., 2024. Enhancing soil health and biodiversity through nitrogen fixation symbiosis in leguminous plants. Molecular Microbiology Research, 14(1): 49–60,
https://doi.org/10.5376/MMR.2024.14.0006 . - Insam H., Goberna M., 2004. Use of Biolog® for the Community Level Physiological Profiling (CLPP) of environmental samples. pp. 853–860. In: Molecular Microbial Ecology Manual (2nd ed.); Eds.: G.A. Kowalchuk, F.J. de Brujin, I.M. Head, A.D. Akkermans, J.D. van Elsas; Kluwer Academic Publishers,
https://doi.org/10.1007/978-1-4020-2177-0_401 . - Jacobsen C.S., Hjelmsø M.H., 2014. Agricultural soils, pesticides and microbial diversity. Current Opinion in Biotechnology, 27: 15–20,
https://doi.org/10.1016/J.COPBIO.2013.09.003 . - Khan M.N., Ahmed I., Ud Din I., Noureldeen A., Darwish H., Khan M., 2022. Proteomic insight into soybean response to flooding stress reveals changes in energy metabolism and cell wall modifications. PLOS ONE, 17(5), e0264453,
https://doi.org/10.1371/JOURNAL.PONE.0264453 . - Khoshru B., Khoshmanzar E., Asgari Lajayer B., Ghorbanpour M., 2023. Soil moisture–mediated changes in microorganism biomass and bioavailability of nutrients in paddy soil. Plant Stress Mitigators: Types, Techniques and Functions, pp. 479–494,
https://doi.org/10.1016/B978-0-323-89871-3.00005-7 . - Komatsu S., Egishi M., Ohno T., 2024. The changes of amino-acid metabolism between wheat and rice during early growth under flooding stress. International Journal of Molecular Sciences, 25(10), 5229,
https://doi.org/10.3390/IJMS25105229/S1 . - Komatsu S., Nishiyama N., Diniyah A., 2023. Biochemical and Enzymatic Analyses to Understand the accumulation of γ-aminobutyric acid in wheat grown under flooding stress. Oxygen, 3(1): 120–132,
https://doi.org/10.3390/OXYGEN3010009/S1 . - Li P., Liu J., Saleem M., Li G., Luan L., Wu M., Li Z., 2022. Reduced chemodiversity suppresses rhizosphere microbiome functioning in the mono-cropped agroecosystems. Microbiome, 10(1): 1–15,
https://doi.org/10.1186/S40168-022-01287-Y/FIGURES/7 . - Margalef O., Sardans J., Fernández-Martínez M., Molowny-Horas R., Janssens I.A., Ciais P., Goll D., Richter A., Obersteiner M., Asensio D., Peñuelas J., 2017. Global patterns of phosphatase activity in natural soils. Scientific Reports, 7(1),
https://doi.org/10.1038/S41598-017-01418-8 . - Martínez-Arias C., Witzell J., Solla A., Martin J.A., Rodríguez-Calcerrada J., 2022. Beneficial and pathogenic plant-microbe interactions during flooding stress. Plant, Cell & Environment, 45: 2875–2897,
https://doi.org/10.1111/pce.14403 . - Męcik M., Buta-Hubeny M., Paukszto Ł., Maździarz M., Wolak I., Harnisz M., Korzeniewska E., 2023. Poultry manure-derived microorganisms as a reservoir and source of antibiotic resistance genes transferred to soil autochthonous microorganisms. Journal of Environmental Management, 348, 119303,
https://doi.org/10.1016/J.JENVMAN.2023.119303 . - Minkina T., Sushkova S., Delegan Y., Bren A., Mazanko M., Kocharovskaya Y., Filonov A., Rajput V.D., Mandzhieva S., Rudoy D., Prazdnova E.V., Elena V., Zelenkova G., Ranjan A., 2023. Effect of chicken manure on soil microbial community diversity in poultry keeping areas. Environmental Geochemistry and Health, 45(12): 9303–9319,
https://doi.org/10.1007/S10653-022-01447-X/FIGURES/7 . - Mishra A., Mukherjee S., Merz B., Singh V.P., Wright D.B., Villarini G., Paul S., Kumar D.N., Khedun C.P., Niyogi D., Schumann G., Stedinger J.R., 2022. An overview of flood concepts, challenges, and future directions. Journal of Hydrologic Engineering, 27(6), 03122001,
https://doi.org/10.1061/(ASCE)HE.1943-5584.0002164 . - Nguyen J., Lara-Gutiérrez J., Stocker R., 2021. Environmental fluctuations and their effects on microbial communities, populations and individuals. FEMS Microbiology Reviews, 45(4): 1–16,
https://doi.org/10.1093/FEMSRE/FUAA068 . - Oleszczak M., 2016. Wpływ przebiegu warunków atmosferycznych na procesy glebowe. Sad, 1: 60–64. (in Polish).
- Ou Y., Rousseau A.N., Wang L., Yan B., Gumiere T., Zhu H., 2019. Identification of the alteration of riparian wetland on soil properties, enzyme activities and microbial communities following extreme flooding. Geoderma, 337: 825–833,
https://doi.org/10.1016/j.geoderma.2018.10.032 . - Peng Q., Zhang L., Huang X., Wu J., Cheng Y., Xie G., Feng X., Chen X., 2023. Environmental factors affecting the diversity and composition of environmental microorganisms in the Shaoxing rice wine producing area. Foods, 12, 3564,
https://doi.org/10.3390/FOODS12193564 . - Rawat P., Das S., Shankhdhar D., Shankhdhar S.C., 2020. Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition, 21(1): 49–68,
https://doi.org/10.1007/S42729-020-00342-7 . - Singh P., Sharma A., Dhankhar J., 2022. Climate change and soil fertility. pp. 25–59. In: Plant Stress Mitigators Vaishnav, A., Arya, S., Choudhary, D.K. (eds). Springer, Singapore,.
https://doi.org/10.1007/978-981-16-7759-5_3 - Singh S.P., 2023. Flooding adversely affects fresh produce safety. Microbiology Australia, 44(4): 185–189,
https://doi.org/10.1071/MA23054 . - Szostek M., Szpunar-Krok E., Pawlak R., Stanek-Tarkowska J., Ilek A., 2022. Effect of different tillage systems on soil organic carbon and enzymatic activity. Agronomy, 12, 208,
https://doi.org/10.3390/AGRONOMY12010208 . - Tabatabai M.A., 1982. Soil enzymes. pp. 903–948. In: Methods of Soil Analysis (2nd ed.); (Eds.) A.L. Page, R.H. Miller, D.R. Keeney; American Society of Agronomy Inc. and Soil Science Society of America Inc.
- Tate R.L., 1979. Effect of flooding on microbial activities in organic soils: carbon metabolism. Soil Science, 128(5): 267–273.
- Taylor B.N., Simms E.L., Komatsu K.J., 2020. More than a functional group: diversity within the legume–rhizobia mutualism and its relationship with ecosystem function. Diversity, 12, 50,
https://doi.org/10.3390/D12020050 . - Tian J., Ge F., Zhang D., Deng S., Liu X., 2021. Roles of Phosphate Solubilizing Microorganisms from managing soil phosphorus deficiency to mediating biogeochemical P cycle. Biology, 10(2), 158,
https://doi.org/10.3390/BIOLOGY10020158 . - Unger I.M., Kennedy A.C, Muzika R.M., 2009. Flooding effects on soil microbial communities. Applied Soil Ecology, 42(1): 1–8,
https://doi.org/10.1016/j.apsoil.2009.01.007 . - Weber K.P., Legge R.L., 2009. One-dimensional metric for tracking bacterial community divergence using sole carbon source utilization patterns. Journal of Microbiological Methods, 79(1): 55–61,
https://doi.org/10.1016/j.mimet.2009.07.020 . - Wolińska A., 2010. Dehydrogenase activity of soil microorganisms and oxygen availability during reoxidation process of selected mineral soils from Poland. Acta Agrophysica, Rozprawy i Monografie, 3(180): 12–30.
- Yadav A.K., Gurnule G.G., Gour N.I., There U., Choudhary V.C., 2022. Micronutrients and fertilizers for improving and maintaining crop value: a review. international journal of environment, Agriculture and Biotechnology, 7(1): 125–140,
https://doi.org/10.22161/IJEAB.71.15 . - Young I.M., Ritz K., 2000. Tillage, habitat space and function of soil microbes. Soil and Tillage Research, 53(3-4): 201–213,
https://doi.org/10.1016/S0167-1987(99)00106-3 . - Zhang Y., Ye C., Su Y., Peng W., Lu R., Liu Y., Huang H., He X., Yang M., Zhu S., 2022. Soil Acidification caused by excessive application of nitrogen fertilizer aggravates soil-borne diseases: Evidence from literature review and field trials. Agriculture, Ecosystems & Environment, 340, 108176,
https://doi.org/10.1016/J.AGEE.2022.108176 . - Zhu C., Ullah W., Wang G., Lu J., Li S., Feng A., Hagan D.F.T., Jiang T., Su B., 2023. Diagnosing potential impacts of Tibetan Plateau spring soil moisture anomalies on summer precipitation and floods in the Yangtze river basin. Journal of Geophysical Research: Atmospheres, 128(8), e2022JD037671,
https://doi.org/10.1029/2022JD037671 . - Zhu S., Chen M., Liang C., Xue Y., Lin S., Tian J., 2020. Characterization of purple acid phosphatase family and functional analysis of GmPAP7a/7b involved in extracellular ATP utilization in soybean. Frontiers in Plant Science, 11, 661,
https://doi.org/10.3389/FPLS.2020.00661/FULL .