Have a personal or library account? Click to login
An Extended RFM Model for Customer Behaviour and Demographic Analysis in Retail Industry Cover

An Extended RFM Model for Customer Behaviour and Demographic Analysis in Retail Industry

Open Access
|Sep 2023

References

  1. Abbasimehr, H., & Shabani, M. (2021). A new framework for predicting customer behaviour in terms of RFM by considering the temporal aspect based on time series techniques. Journal of ambient intelligence and humanised computing, 12(1), 515-531. https://doi.org/10.1007/s12652-020-02015-w
  2. Al-Augby, S., Majewski, S., Majewska, A., & Nermend, K. (2015). A comparison of k-means and fuzzy c-means clustering methods for a sample of gulf cooperation council stock markets. Folia Oeconomica Stetinensia, 14(2), 19-36. https://doi.org/10.1515/foli-2015-0001
  3. Allegue, S., Abdellatif, T., & Bannour, K. (2020, September). RFMC: a spending-category segmentation. In 2020 IEEE 29th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE) (pp. 165-170). IEEE.
  4. Bose, I., & Chen, X. (2015). Detecting the migration of mobile service customers using fuzzy clustering. Information & Management, 52(2), 227-238. https://doi.org/10.1016/j.im.2014.11.001
  5. Brahmana, R. S., Mohammed, F. A., & Chairuang, K. (2020). Customer segmentation based on RFM model using K-means, K-medoids, and DBSCAN methods. Lontar Komput. J. Ilm. Teknol. Inf, 11(1), 32. https://doi.org/10.24843/LKJITI.2020.v11.i01.p04.
  6. Cheng, C. H., & Chen, Y. S. (2009). Classifying the segmentation of customer value via RFM model and RS theory. Expert systems with applications, 36(3), 4176-4184. https://doi.org/10.1016/j.eswa.2008.04.003
  7. Chiu, S., & Tavella, D. (2008). Data mining and market intelligence for optimal marketing returns. Routledge.
  8. Christy, A. J., Umamakeswari, A., Priyatharsini, L., & Neyaa, A. (2021). RFM ranking–An effective approach to customer segmentation. Journal of King Saud University-Computer and Information Sciences, 33(10), 1251-1257. https://doi.org/10.1016/j.jksuci.2018.09.004
  9. Covoes, T. F., Hruschka, E. R., & Ghosh, J. (2013). A study of k-means-based algorithms for constrained clustering. Intelligent Data Analysis, 17(3), 485-505. https://doi.org/10.3233/IDA-130590
  10. Dawane, V., Waghodekar, P., & Pagare, J. (2021). RFM Analysis Using K-Means Clustering to Improve Revenue and Customer Retention. In Proceedings of the International Conference on Smart Data Intelligence (ICSMDI 2021).
  11. Forgey, E. (1965). Cluster analysis of multivariate data: Efficiency vs. interpretability of classification. Biometrics, 21(3), 768-769.
  12. Friedman, H. P., & Rubin, J. (1967). On some invariant criteria for grouping data. Journal of the American Statistical Association, 62(320), 1159-1178.
  13. Gajjar, N. B. (2013). Factors affecting consumer behaviour. International Journal of Research in Humanities and Social Sciences, 1(2), 10-15.
  14. Ha, S. H., & Park, S. C. (1998). Application of data mining tools to hotel data mart on the Intranet for database marketing. Expert Systems with Applications, 15(1), 1-31. https://doi.org/10.1016/S0957-4174(98)00008-6
  15. Hamerly, G., & Elkan, C. (2002, November). Alternatives to the k-means algorithm that find better clusterings. In Proceedings of the eleventh international conference on Information and knowledge management (pp. 600-607).
  16. Heldt, R., Silveira, C. S., & Luce, F. B. (2021). Predicting customer value per product: From RFM to RFM/P. Journal of Business Research, 127, 444-453. https://doi.org/10.1016/j.jbusres.2019.05.001
  17. Hoegele, D., Schmidt, S. L., & Torgler, B. (2016). The importance of key celebrity characteristics for customer segmentation by age and gender: Does beauty matter in professional football?. Review of Managerial Science, 10(3), 601-627. https://doi.org/10.1007/s11846-015-0172-x
  18. Huang, Z. (1998). Extensions to the k-means algorithm for clustering large data sets with categorical values. Data mining and knowledge discovery, 2(3), 283-304. https://doi.org/10.1023/A:1009769707641
  19. Hughes, A. M. (1994). Strategic database marketing: the masterplan for starting and managing a profitable. Customer-based Marketing Program, Irwin Professional.
  20. Jacoby, J. (1975). Consumer psychology as a social psychological sphere of action. American Psychologist, 30(10), 977-987.
  21. Kasem, M. S., Hamada, M., & Taj-Eddin, I. (2023). Customer Profiling, Segmentation, and Sales Prediction using AI in Direct Marketing. arXiv preprint arXiv:2302.01786.
  22. Kicova, E., Kral, P., & Janoskova, K. (2018). Proposal for Brand’s Communication Strategy Developed on Customer Segmentation Based on Psychological Factors and Decision-Making Speed in Purchasing: Case of the Automotive Industry. Economics and Culture, 15(1), 5-14. https://doi.org/10.2478/jec-2018-0001
  23. Kumar, A. (2023). Customer Segmentation of Shopping Mall Users Using K-Means Clustering. In Advancing SMEs Toward E-Commerce Policies for Sustainability (pp. 248-270). IGI Global.
  24. Lakshmi, K., Shanthi, S., & Parvathavarthini, S. (2018). Clustering mixed datasets using k-prototype algorithm based on crow-search optimisation. In Developments and Trends in Intelligent Technologies and Smart Systems (pp. 191-210). IGI Global.
  25. Larivière, B., & Van den Poel, D. (2005). Predicting customer retention and profitability by using random forests and regression forests techniques. Expert systems with applications, 29(2), 472-484. https://doi.org/10.1016/j.eswa.2005.04.043
  26. Liu, D. R., & Shih, Y. Y. (2005a). Integrating AHP and data mining for product recommendation based on customer lifetime value. Information & Management, 42(3), 387-400. https://doi.org/10.1016/j.im.2004.01.008
  27. Liu, D. R., & Shih, Y. Y. (2005b). Hybrid approaches to product recommendation based on customer lifetime value and purchase preferences. Journal of Systems and Software, 77(2), 181-191. https://doi.org/10.1016/j.jss.2004.08.031
  28. Lloyd, S. (1982). Least squares quantisation in PCM. IEEE transactions on information theory, 28(2), 129-137. https://doi.org/10.1109/TIT.1982.1056489
  29. Londhe, S., & Palwe, S. (2022). Customer-Centric Sales Forecasting Model: RFM-ARIMA Approach. Business Systems Research: International journal of the Society for Advancing Innovation and Research in Economy, 13(1), 35-45. https://doi.org/10.2478/bsrj-2022-0003
  30. McDonald, M. (2012). Market segmentation: How to do it and how to profit from it. John Wiley & Sons.
  31. Miglautsch, J. R. (2000). Thoughts on RFM scoring. Journal of Database Marketing & Customer Strategy Management, 8(1), 67-72. https://doi.org/10.1057/palgrave.jdm.3240019
  32. Moghaddam, Q.S., Abdolvand, N., & Harandi, R.S. (2017). A RFMV Model and Customer Segmentation Based on Variety of Products. Journal of Information Systems and Telecommunication (JIST), 3(19), 155.
  33. Namvar, M., Gholamian, M. R., & KhakAbi, S. (2010). A Two Phase Clustering Method for Intelligent Customer Segmentation. 2010 International Conference on Intelligent Systems, Modelling and Simulation. https://doi.org/10.1109/isms.2010.48
  34. Omran, M. G., Engelbrecht, A. P., & Salman, A. (2007). An overview of clustering methods, Intelligent Data Analysis. 11(6), 583-605. https://doi.org/10.3233/ida-2007-11602
  35. Osborne, J. (2010). Improving your data transformations: Applying the Box-Cox transformation. Practical Assessment, Research, and Evaluation, 15(1), 12. https://doi.org/10.7275/qbpc-gk17
  36. Pol, L. G. (1991). Demographic contributions to marketing: An assessment. Journal of the Academy of Marketing Science, 19(1), 53-59. https://doi.org/10.1007/BF02723424
  37. Prabha, K. A., & Visalakshi, N. K. K. (2014). Improved Particle Swarm Optimization Based K-Means Clustering. 2014 International Conference on Intelligent Computing Applications. https://doi.org/10.1109/icica.2014.21
  38. Ritchie, H. and Roser, M. (2019, Sept 20) Age Structure - Our World in Data. Retrieved July 31, 2023, from https://ourworldindata.org/age-structure.
  39. Romano, S., Bailey, J., Nguyen, V., & Verspoor, K. (2014, June). Standardised mutual information for clustering comparisons: one step further in adjustment for chance. In International conference on machine learning (pp. 1143-1151). PMLR..
  40. Sarvari, P. A., Ustundag, A., & Takci, H. (2016). Performance evaluation of different customer segmentation approaches based on RFM and demographics analysis. Kybernetes, 45(7), 1129-1157. https://doi.org/10.1108/K-07-2015-0180.
  41. Seger, C. (2018). An investigation of categorical variable encoding techniques in machine learning: binary versus one-hot and feature hashing.
  42. Smith, W. R. (1956). Product differentiation and market segmentation as alternative marketing strategies. Journal of marketing, 21(1), 3-8. https://doi.org/10.1177/002224295602100102
  43. Stone, B. (1995). Successful Direct Marketing Methods, Lincoln-wood. IL: NTC Business Books, 29-35..
  44. Tavakoli, M., Molavi, M., Masoumi, V., Mobini, M., Etemad, S., & Rahmani, R. (2018, October). Customer segmentation and strategy development based on user behavior analysis, RFM model and data mining techniques: a case study. In 2018 IEEE 15th International Conference on e-Business Engineering (ICEBE) (pp. 119-126). IEEE.
  45. Verhoef, P. C., Lemon, K. N., Parasuraman, A., Roggeveen, A., Tsiros, M., & Schlesinger, L. A. (2009). Customer experience creation: Determinants, dynamics and management strategies. Journal of retailing, 85(1), 31-41. https://doi.org/10.1016/j.jretai.2008.11.001
  46. Vinh, N. X., Epps, J., & Bailey, J. (2009, June). Information theoretic measures for clusterings comparison: is a correction for chance necessary?. In Proceedings of the 26th annual international conference on machine learning (pp. 1073-1080)..
  47. Wedel, M., & Kamakura, W. A. (2000). Market segmentation: Conceptual and methodological foundations. Springer Science & Business Media.
  48. Wei, J. T., Lin, S. Y., & Wu, H. H. (2010). A review of the application of RFM model. African Journal of Business Management, 4(19), 4199.
  49. Wei, J. T., Lin, S. Y., Weng, C. C., & Wu, H. H. (2012). A case study of applying LRFM model in market segmentation of a children’s dental clinic. Expert Systems with Applications, 39(5), 5529-5533. https://doi.org/10.1016/j.eswa.2011.11.066
  50. Wu, J., Shi, L., Yang, L., XiaxiaNiu, Li, Y., Cui, X., Tsai, S-B. & Zhang, Y. (2021). User value identification based on improved RFM model and k-means++ algorithm for complex data analysis. Wireless Communications and Mobile Computing, 2021, 1-8. https://doi.org/10.1155/2021/9982484
  51. Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J., Ng, A., Liu, B., Yu, P. S., Zhou, Z.-H., Steinbach, M., Hand, D. J., and SteiD. (2008). Top 10 algorithms in data mining. Knowledge and information systems, 14(1), 1-37. https://doi.org/10.1007/s10115-007-0114-2
  52. Wu, Z., Jin, L., Zhao, J., Jing, L., & Chen, L. (2022). Research on Segmenting E-Commerce Customer through an Improved K-Medoids Clustering Algorithm. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/9930613
  53. Yeh, I. C., Yang, K. J., & Ting, T. M. (2009). Knowledge discovery on RFM model using Bernoulli sequence. Expert Systems with applications, 36(3), 5866-5871. https://doi.org/10.1016/j.eswa.2008.07.018.
  54. Yıldız, E., Güngör Şen, C., & Işık, E. E. (2023). A Hyper-Personalised Product Recommendation System Focused on Customer Segmentation: An Application in the Fashion Retail Industry. Journal of Theoretical and Applied Electronic Commerce Research, 18(1), 571-596. https://doi.org/10.3390/jtaer18010029
  55. Yu, L., Zhou, R., Chen, R., & Lai, K. K. (2022). Missing data preprocessing in credit classification: One-hot encoding or imputation?. Emerging Markets Finance and Trade, 58(2), 472-482. https://doi.org/10.1080/1540496X.2020.1825935.
DOI: https://doi.org/10.2478/bsrj-2023-0002 | Journal eISSN: 1847-9375 | Journal ISSN: 1847-8344
Language: English
Page range: 26 - 53
Submitted on: Dec 25, 2022
Accepted on: Jul 23, 2023
Published on: Sep 21, 2023
Published by: IRENET - Society for Advancing Innovation and Research in Economy
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Thanh Ho, Suong Nguyen, Huong Nguyen, Ngoc Nguyen, Dac-Sang Man, Thao-Giang Le, published by IRENET - Society for Advancing Innovation and Research in Economy
This work is licensed under the Creative Commons Attribution 4.0 License.