Have a personal or library account? Click to login
Sentiment Analysis of Customer Feedback in Online Food Ordering Services Cover

Sentiment Analysis of Customer Feedback in Online Food Ordering Services

By: Bang Nguyen,  Van-Ho Nguyen and  Thanh Ho  
Open Access
|Apr 2022

References

  1. 1. Akila, R., Revathi, S., Shreedevi, G. (2020), “Opinion Mining on Food Services using Topic Modeling and Machine Learning Algorithms”, in 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), pp. 1071-1076.10.1109/ICACCS48705.2020.9074428
  2. 2. Akter, S., Aziz, M. T. (2016), “Sentiment analysis on facebook group using lexicon based approach”, in 2016 3rd International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), pp. 1-4.10.1109/CEEICT.2016.7873080
  3. 3. Balan, S., Rege, J. (2017), “Mining for social media: Usage patterns of small businesses”, Business Systems Research: The Journal of Society for Advancing Innovation and Research in Economy, Vol. 8 No. 1, pp. 43-50.10.1515/bsrj-2017-0004
  4. 4. Burges, C. J. (1998), “A tutorial on support vector machines for pattern recognition”, Data mining and knowledge discovery, Vol. 2 No. 2, pp. 121-167.10.1023/A:1009715923555
  5. 5. Dunđer, I., Horvat, M., Lugović, S. (2016), “Word occurrences and emotions in social media: Case study on a Twitter corpus”, in Biljanović, P. (Ed.), Proceedings of the 39th International Convention on Information and Communication Technology, Electronics and Microelectronics MIPRO 2016, Croatian Society for Information and Communication Technology, Electronics and Microelectronics - MIPRO, Rijeka, pp. 1557-1560.10.1109/MIPRO.2016.7522337
  6. 6. Joachims, T. (2002), Learning to classify text using support vector machines, Springer Science & Business Media.10.1007/978-1-4615-0907-3
  7. 7. Kadriu, A., Abazi, L., Abazi, H. (2019), “Albanian Text Classification: Bag of Words Model and Word Analogies”, Business Systems Research: The Journal of the Society for Advancing Innovation and Research in Economy, Vol. 10 No. 1, pp. 74-87.10.2478/bsrj-2019-0006
  8. 8. Khairnar, J., Kinikar, M. (2013), “Machine learning algorithms for opinion mining and sentiment classification”, International Journal of Scientific and Research Publications, Vol. 3 No. 6, pp. 1-6.
  9. 9. Krstić, Ž., Seljan, S., Zoroja, J. (2019), “Visualization of Big Data Text Analytics in Financial Industry: A Case Study of Topic Extraction for Italian Banks”, Entrenova, Vol. 5 No. 1, pp. 67-75.10.2139/ssrn.3490108
  10. 10. Le, H. S., Trieu, C., Ho, T., Lee, J. H., Lee, H. K. (2017), “Applying Artificial Neural Network for Sentiment Analytics of Social Media Text Data in fastfood industry”, Internet e-commerce research, Vol. 17 No. 5, pp. 113-123.
  11. 11. Li, Z., Fan, Y., Jiang, B., Lei, T., Liu, W. (2019), “A survey on sentiment analysis and opinion mining for social multimedia”, Multimedia Tools and Applications, Vol. 78 No. 6, pp. 6939-6967.10.1007/s11042-018-6445-z
  12. 12. Liu, B. (2012), “Sentiment analysis and opinion mining”, Synthesis lectures on human language technologies, Vol. 5 No. 1, pp. 1-167.10.2200/S00416ED1V01Y201204HLT016
  13. 13. Liu, B. (2017), “Many facets of sentiment analysis”, in A practical guide to sentiment analysis, pp. 11-39.10.1007/978-3-319-55394-8_2
  14. 14. Lugović, S., Dunđer, I., Horvat, M. (2016), “Techniques and applications of emotion recognition in speech”, in Proceedings of MIPRO, pp. 1278-1283.10.1109/MIPRO.2016.7522336
  15. 15. Maks, I., Vossen, P. (2012), “A lexicon model for deep sentiment analysis and opinion mining applications”, Decision Support Systems, Vol. 53 No. 4, pp. 680-688.10.1016/j.dss.2012.05.025
  16. 16. Mudambi, S. M., Schuff, D. (2010), “What makes a helpful review? A study of customer reviews on Amazon.com”, MIS Quarterly, Vol. 34 No. 1, pp. 185-200.10.2307/20721420
  17. 17. Nagpal, M., Kansal, K., Chopra, A., Gautam, N., Jain, V. K. (2020), “Effective Approach for Sentiment Analysis of Food Delivery Apps”, in Soft Computing: Theories and Applications, pp. 527-536.10.1007/978-981-15-0751-9_49
  18. 18. Nguyen, H., Ho, T. (2020), “Topic modeling for analyzing online reviews in hotel sector”, Science & Technology Development Journal - Economics - Law and Management, Vol. 4 No. 4, pp. 1081-1092.10.32508/stdjelm.v4i4.692
  19. 19. Ohana, B., Tierney, B. (2009), “Sentiment classification of reviews using SentiWordNet”, in the 9th IT&T conference, pp. 18-30.
  20. 20. Pang, B., Lee, L. (2008), “Opinion mining and sentiment analysis”, Foundations Trends Information Retrieval, Vol. 2 No. 1-2, pp. 1-135.10.1561/9781601981516
  21. 21. Patel, R., Sornalakshmi, K. (2020), “Sentiment Analysis of Food Reviews Using User Rating Score”, in Artificial Intelligence Techniques for Advanced Computing Applications, pp. 415-431.10.1007/978-981-15-5329-5_39
  22. 22. Pejić Bach, M., Krstić, Ž., Seljan, S. (2019), “Big data text mining in the financial sector”, in Metawa, N., Elhoseny, M., Hassanien, A. E., Hassan, M. K. (Eds.), Expert Systems in Finance: Smart Financial Applications in Big Data Environments, Routledge, pp. 80-96.10.4324/9780429024061-6
  23. 23. Sun, S., Luo, C., Chen, J. (2017), “A review of natural language processing techniques for opinion mining systems”, Information fusion, Vol. 36, pp. 10-25.10.1016/j.inffus.2016.10.004
  24. 24. Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M. (2011), “Lexicon-based methods for sentiment analysis”, Computational linguistics, Vol. 37 No. 2, pp. 267-307.10.1162/COLI_a_00049
  25. 25. Vu, L., Le, T. (2017), “A lexicon-based method for Sentiment Analysis using social network data”, in Proceedings of the International Conference on Information and Knowledge Engineering (IKE), pp. 10-16.
  26. 26. Vu, T. T., Pham, H. T., Luu, C. T., Ha, Q. T. (2011), “A feature-based opinion mining model on product reviews in Vietnamese”, in Semantic Methods for Knowledge Management and Communication, pp. 23-33.10.1007/978-3-642-23418-7_3
  27. 27. Yadav, S. K. (2015), “Sentiment analysis and classification: a survey”, International Journal of Advance Research in Computer Science and Management Studies, Vol. 3 No. 3, pp. 113-121.
  28. 28. Yang, K., Cai, Y., Huang, D., Li, J., Zhou, Z., Lei, X. (2017), “An effective hybrid model for opinion mining and sentiment analysis”, in 2017 IEEE International Conference on Big Data and Smart Computing (BigComp), pp. 465-466.10.1109/BIGCOMP.2017.7881759
DOI: https://doi.org/10.2478/bsrj-2021-0018 | Journal eISSN: 1847-9375 | Journal ISSN: 1847-8344
Language: English
Page range: 46 - 59
Submitted on: Jan 10, 2021
Accepted on: Jul 4, 2021
Published on: Apr 10, 2022
Published by: IRENET - Society for Advancing Innovation and Research in Economy
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Bang Nguyen, Van-Ho Nguyen, Thanh Ho, published by IRENET - Society for Advancing Innovation and Research in Economy
This work is licensed under the Creative Commons Attribution 4.0 License.