Have a personal or library account? Click to login

Plant hydraulics and measurement of vulnerability to embolism formation: a guide for beginners

By:
Open Access
|Dec 2023

References

  1. Alder, N.N., Pockman, W.T., Sperry, J.S., Nuismer, S., 1997. Use of centrifugal force in the study of xylem cavitation. Journal of Experimental Botany 48, 665–674.
  2. Beikircher, B., Mayr, S., 2016. Avoidance of harvesting and sampling artefacts in hydraulic analyses: a protocol tested on Malus domestica. Tree Physiology 36, 797–803.
  3. Brodersen, C.R., McElrone, A.J., Choat, B., Lee, E.F., Shackel, K.A., Matthews, M.A., 2013. In vivo visualizations of drought-induced embolism spread in Vitis vinifera. Plant Physiology 161, 1820–1829.
  4. Brodribb, T.J., Bowman, D.J., Nichols, S., Delzon, S., Burlett, R., 2010. Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytologist 188, 533–542.
  5. Brodribb, T.J., Carriqui, M., Delzon, S., Lucani, C., 2017. Optical measurement of stem xylem vulnerability. Plant Physiology 174, 2054–2061.
  6. Brodribb, T.J., Holbrook, N.M., 2003. Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiology 132, 2166–2173.
  7. Canny, M.J., 1997. Vessel contents during transpiration – embolisms and refilling. American Journal of Botany 84, 1223–1230.
  8. Choat, B., Jansen, S., Brodribb, T.J., Cochard, H., Delzon, S., Bhaskar, R., Bucci, S.J., Field, T.S., et al., 2012. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755.
  9. Cochard, H., 2002. A technique for measuring xylem hydraulic conductance under high negative pressures. Plant, Cell and Environment 25, 815–819.
  10. Cochard, H., Badel, E., Herbette, S., Delzon, S., Choat, B., Jansen, S., 2013. Methods for measuring plant vulnerability to cavitation: a critical review. Journal of Experimental Botany 64, 4779–4791.
  11. Cochard, H., Cruiziat, P., Tyree, M.T., 1992. Use of positive pressures to establish vulnerability curves. Plant Physiology 100, 205–209.
  12. Dixon, H.H., Joly, J., 1895. On the ascent of sap. Philosophical Transactions of the Royal Society of London 186, 563–576.
  13. Ennajeh, M., Nouiri, M., Khemira, H., Cochard, H., 2011a. Improvement to the air-injection technique to estimate xylem vulnerability to cavitation. Trees - Structure and Function 25, 705–710.
  14. Ennajeh, M., Simões, F., Khemira, H., Cochard, H., 2011b. How reliable is the double-ended pressure sleeve technique for assessing xylem vulnerability to cavitation in woody angiosperms? Physiologia Plantarum 142, 205–210.
  15. Ganthaler, A., Mayr, S., 2021. Subalpine dwarf shrubs differ in vulnerability to xylem cavitation: An innovative staining approach enables new insights. Physiologia Plantarum 172, 2011–2021.
  16. Gleason, S., Westoby, M., Jansen, S., Choat, B., Hacke, U.G., Pratt, R.B., Bhaskar, R., Brodribb, T.J., et al., 2016. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world's woody plant species. New Phytologist 209, 123–136.
  17. Hacke, U.G., Venturas, M.D., MacKinnon, E.D., Jacobsen, A.L., Sperry, J.S., Pratt, R.B., 2015. The standard centrifuge method accurately measures vulnerability curves of long-vesselled olive stems. New Phytologist 205, 116–127.
  18. Hartmann, H., Bastos, A., Das, A.J., Esquivel-Muelbert, A., Hammond, W.M., Martínez-Vilalta, J., McDowell, N.G, Powers, J.S., Pugh, A.M.T., Ruthrof, K.X., Allen, C.D., 2022. Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide. Annual Review of Plant Biology 73, 673–702.
  19. Hietz, P., Rosner, S., Sorz, J., Mayr, S., 2008. Comparison of methods to quantify loss of hydraulic conductivity in Norway spruce. Annals of Forest Science 65, 502–508.
  20. Hochberg, U., Herrera, J.C., Cochard, H., Badel, E., 2016. Short-time xylem relaxation results in reliable quantification of embolism in grapevine petioles and sheds new light on their hydraulic strategy. Tree Physiology 36, 748–755.
  21. Holbrook, N.M., Ahrens, E.T., Burns, M.J., Zwieniecki, M.A., 2001. In vivo observation of cavitation and embolism repair using magnetic resonance imaging. Plant Physiology 126, 27–31.
  22. Kattge, J., Boenisch, G., Diaz, S., Lavorel, S., Prentice, I.C., Leadley, P., Tautenhahn., S., Werner, G.D.A., et al., 2020. TRY plant trait database - enhanced coverage and open access. Global Change Biology 26, 119–188.
  23. Kiorapostolou, N., Da Sois, L., Petruzzellis, F., Savi, T., Trifilò, P., Nardini, A., Petit, G., 2019. Vulnerability to xylem embolism correlates to wood parenchyma fraction in Angiosperms but not in Gymnosperms. Tree Physiology 39, 1675–1684.
  24. Kolb, K.J., Sperry, J.S., Lamont, B.B., 1996. A method for measuring xylem hydraulic conductance and embolism in entire root and shoot systems. Journal of Experimental Botany 47, 1805–1810.
  25. Lens, F., Gleason, S.M., Bortolami, G., Brodersen, C., Delzon, S., Jansen, S., 2022. Functional xylem characteristics associated with drought-induced embolism in angiosperms. New Phytologist 236, 2019–2036.
  26. Li, S., Lens, F., Espino, S., Karimi, Z., Klepsch, M., Schenk, H.J., Schmitt, M., Schuldt, B., Jansen, S., 2016. Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem. IAWA Journal 37, 152–171.
  27. Losso, A., Bär, A., Dämon, B., Dullin, C., Ganthaler, A., Petruzzellis, F., Savi, T., Tromba, G., Nardini, A., Mayr, S., Beikircher, B., 2019. Insights from in vivo micro-CT analysis: testing the hydraulic vulnerability segmentation in Fagus sylvatica and Acer pseudoplatanus seedlings. New Phytologist 221, 1831–1842.
  28. Losso, A., Nardini, A., Nolf, M., Mayr, S., 2016. Elevational trends in hydraulic efficiency and safety of Pinus cembra roots. Oecologia 180, 1091–1102.
  29. Maherali, H., Pockman, W.T., Jackson, R.B., 2004. Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology 85, 2184–2199.
  30. Martinez, E.M., Cancela, J.J., Cuesta, T.S., Neira, X.X., 2011. Use of psychrometers in field measurements of plant material: accuracy and handling difficulties. Spanish Journal of Agricultural Research 9, 313–328.
  31. Meixner, M., Tomasella, M., Foerst, P., Windt, C.W., 2020. A small-scale MRI scanner and complementary imaging method to visualize and quantify xylem embolism formation. New Phytologist 226, 1517–1529.
  32. Milburn, J.A., Johnson, R.P.C., 1966. The conduction of sap: II. Detection of vibrations produced by sap cavitation in Ricinus xylem. Planta 69, 43–52.
  33. Nardini, A., Luglio, J., 2014. Leaf hydraulic capacity and drought vulnerability: possible trade-offs and correlations with climate across three major biomes. Functional Ecology 28, 810–818.
  34. Netherer, S., 2022. Towards an improved understanding of bark beetle and other insect herbivore infestation in conifer forests. Die Bodenkultur 73, 135–151.
  35. Nolf, M., Beikircher, B., Rosner, S., Nolf, A., Mayr, S., 2015. Xylem cavitation resistance can be estimated based on time-dependent rate of acoustic emissions. New Phytologist 208, 625–632.
  36. Nolf, M., Lopez, R., Peters, J.M.R., Flavel, R.J., Koloadin, L.S., Young, I.M., Choat, B., 2017. Visualization of xylem embolism by X-ray microtomography: a direct test against hydraulic measurements. New Phtyologist 214, 890–898.
  37. Paligi, S.S., Link, R.M., Isasa, E., Bittencourt, P., Cabral, J.S., Jansen, S., Oliveira, R.S., Pereira, L., et al., 2023. Assessing the agreement between the pneumatic and the flow-centrifuge method for estimating xylem safety in temperate diffuse-porous tree species. Plant Biology, doi:10.1111/plb.13573.
  38. Rosner, S., Klein, A., Wimmer, R., Karlsson, B., 2006. Extraction of features from ultrasound acoustic emissions: a tool to assess the hydraulic vulnerability of Norway spruce trunkwood? New Phytologist 171, 105–116.
  39. Rosner, S., Nöbauer, S., Voggeneder, K., 2021. Ready for screening: Fast assessable hydraulic and anatomical proxies for vulnerability to cavitation of young conifer sapwood. Forests 12, 1104.
  40. Sack, L., Scoffoni, C., 2012. Measurement of leaf hydraulic conductance and stomatal conductance and their responses to irradiance and dehydration using the evaporative flux methods (EFM). Journal of Visualized Experiments, e4179.
  41. Salleo, S., Hinckley, T.M., Kikuta, S.B., Lo Gullo, M.A., Weilgony, P., Yoon, T.M., Richter H., 1992. A method for inducing xylem embolism in situ: experiments with a field-grown tree. Plant, Cell and Environment 15, 491–497.
  42. Savi, T., Bertuzzi, S., Branca, S., Tretiach, M., Nardini, A., 2015. Drought-induced xylem cavitation and hydraulic deterioration: risk factors for urban trees under climate change? New Phytologist 205, 1106–1116.
  43. Savi, T., Love, V.L., Dal Borgo, A., Martellos, S., Nardini, A., 2017a. Morpho-anatomical and physiological traits in saplings of drought-tolerant Mediterranean woody species. Trees - Structure and Function 31, 1137–1148.
  44. Savi, T., Marin, M., Luglio, J., Petruzzellis, F., Mayr, S., Nardini, A., 2016. Leaf hydraulic vulnerability protects stem functionality under drought stress in Salvia officinalis. Functional Plant Biology 43, 370–379.
  45. Savi, T., Miotto, A., Petruzzellis, F., Losso, A., Pacilè, S., Tromba, G., Mayr, S., Nardini, A., 2017b. Drought-induced embolism in stems of sunflower: a comparison of in vivo micro-CT observations and destructive hydraulic measurements. Plant Physiology and Biochemistry 120, 24–29.
  46. Savi, T., Tintner, J., Da Sois, L., Grabner, M., Petit, G., Rosner, S., 2019. The potential of Mid-Infrared spectroscopy for prediction of wood density and vulnerability to embolism in woody angiosperms. Tree Physiology 39, 503–510.
  47. Scholander, P.F., Bradstreet, E.D., Hemmingsen, E.A., Hammel, H.T., 1965. Sap pressure in vascular plants: Negative hydrostatic pressure can be measured in plants. Science 148, 339–346.
  48. Schuster, A.C., Burghardt, M., Riedereravi, M., 2017. The ecophysiology of leaf cuticular transpiration: are cuticular water permeabilities adapted to ecological conditions? Journal of Experimental Botany 68, 5271–5279.
  49. Scoffoni, C., Albuquerque, C., Brodersen, C.R., Townes, S.V., John, G.P., Bartlett, M.K., Buckley, T.N., McElrone, A.J., Sack., L., 2017. Outside-xylem vulnerability, not xylem embolism, controls leaf hydraulic decline during dehydration. Plant Physiology 173, 1197–1210.
  50. Secchi, F., Pagliarani, C., Cavalletto, S., Petruzzellis, F., Tonel, G., Savi, T., Tromba, G., Obertino, M.M., Lovisolo, C., Nardini, A., Zwieniecki, M.A., 2021. Chemical inhibition of xylem cellular activity impedes the removal of drought-induced embolisms in poplar stems - new insights from micro-CT analysis. New Phytologist 229, 820–830.
  51. Sperry, J.S., Donnelly, J.R., Tyree, M.T., 1988. A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell and Environment 11, 35–40.
  52. Théroux-Rancourt, G., Herrera, J.C., Voggeneder, K., De Berardinis, F., Luijken, N., Nocker, L., Savi, T., Scheffknecht, S., et al., 2023. Analyzing anatomy over three dimensions unpacks the differences in mesophyll diffusive area between sun and shade Vitis vinifera leaves. AOB Plants, doi: 10.1093/aobpla/plad001.
  53. Torres-Ruiz, J.M., Cochard, H., Mayr, S., Beikircher, B., Diaz-Espejo, A., Rodriguez-Dominguez, C.M., Badel, E., Fernández, J.E., 2014. Vulnerability to cavitation in Olea europaea current-year shoots: further evidence of an open-vessel artefact associated with centrifuge and air-injection techniques. Physiologia Plantarum 152, 465–474.
  54. Torres-Ruiz, J.M., Jansen, S., Choat, B., Mc Elrone, A.J., Cochard, H., Brodribb, T.J., Badel, E., Burlett, R., Bouche, P.S., Brodersen, C.R., Li, S., Morris, H., Delzon, S., 2015. Direct X-ray microtomography observation confirms the induction of embolism upon xylem cutting under tension. Plant Physiology 167, 40–43.
  55. Trifilò, P., Raimondo, F., Lo Gullo, M.A., Barbera, P.M., Salleo, S., Nardini, A., 2014. Relax and refill: xylem rehydration prior to hydraulic measurements favours embolism repair in stems and generates artificially low PLC values. Plant, Cell and Environment 37, 2491–2499.
  56. Tyree, M.T., Ewers, F.W., 1991. The hydraulic architecture of trees and other woody plants New Phtyologist 119, 345–360.
  57. Tyree, M.T., Sinclair, B., Lu, P., Granier, A., 1993. Whole shoot hydraulic resistance in Quercus species measured with a new high-pressure flowmeter. Annales Des Sciences Forestières 50, 417–423.
  58. Tyree, M.T., Sperry, J.S., 1989. Vulnerability of xylem to cavitation and embolism. Annual Review of Plant Physiology and Molecular Biology 40, 19–38.
  59. Tyree, M.T., Zimmermann, M.H., 2002. Xylem structure and the ascent of sap. Springer Verlag, Berlin.
  60. Urli, M., Porté, A.J., Cochard, H., Guengant, Y., Burlett, R., Delzon, S., 2013. Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Tree Physiology 33, 672–683.
  61. Venturas, M.D., Mac Kinnon, E.D., Jacobsen, A.L., Pratt, R.B., 2015. Excising stem samples under water at native tension does not induce xylem cavitation. Plant, Cell and Environment 38, 1060–1068.
  62. Venturas, M.D., Pratt, R.B., Jacobsen, A.L., Castro, V., Fickle, J.C., Hacke, U.G., 2019. Direct comparison of four methods to construct xylem vulnerability curves: Differences among techniques are linked to vessel network characteristics. Plant, Cell and Environment 42, 2422–2436.
  63. Venturas, M.D., Sperry, J.S., Hacke, U.G., 2017. Plant xylem hydraulics: What we understand, current research, and future challenges. Journal of Integrative Plant Biology 59, 356–389.
  64. Wang, R., Zhang, L., Zhang, S., Cai, J., Tyree, M.T., 2014. Water relations of Robinia pseudoacacia L.: do vessels cavitate and refill diurnally or are R-shaped curves invalid in Robinia? Plant, Cell and Environment 37, 2667–2678.
  65. Wheeler, J.K., Huggett, B.A., Tofte, A.N., Rockwell, F.E., Holbrook, N.M., 2013. Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. Plant, Cell and Environment 36, 1938–1949.
  66. Zwieniecki, M.A., Melcher, P.J., Ahrens, E.T., 2013. Analysis of spatial and temporal dynamics of xylem refilling in Acer rubrum L. using magnetic resonance imaging. Frontiers in Plant Science 4, 165.
DOI: https://doi.org/10.2478/boku-2023-0006 | Journal eISSN: 2719-5430 | Journal ISSN: 0006-5471
Language: English
Page range: 65 - 79
Submitted on: Aug 4, 2023
Accepted on: Sep 24, 2023
Published on: Dec 4, 2023
Published by: Universität für Bodenkultur Wien
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Tadeja Savi, published by Universität für Bodenkultur Wien
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.