Alder, N.N., Pockman, W.T., Sperry, J.S., Nuismer, S., 1997. Use of centrifugal force in the study of xylem cavitation. Journal of Experimental Botany 48, 665–674.
Beikircher, B., Mayr, S., 2016. Avoidance of harvesting and sampling artefacts in hydraulic analyses: a protocol tested on Malus domestica. Tree Physiology 36, 797–803.
Brodribb, T.J., Bowman, D.J., Nichols, S., Delzon, S., Burlett, R., 2010. Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytologist 188, 533–542.
Choat, B., Jansen, S., Brodribb, T.J., Cochard, H., Delzon, S., Bhaskar, R., Bucci, S.J., Field, T.S., et al., 2012. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755.
Ennajeh, M., Nouiri, M., Khemira, H., Cochard, H., 2011a. Improvement to the air-injection technique to estimate xylem vulnerability to cavitation. Trees - Structure and Function 25, 705–710.
Ennajeh, M., Simões, F., Khemira, H., Cochard, H., 2011b. How reliable is the double-ended pressure sleeve technique for assessing xylem vulnerability to cavitation in woody angiosperms? Physiologia Plantarum 142, 205–210.
Ganthaler, A., Mayr, S., 2021. Subalpine dwarf shrubs differ in vulnerability to xylem cavitation: An innovative staining approach enables new insights. Physiologia Plantarum 172, 2011–2021.
Gleason, S., Westoby, M., Jansen, S., Choat, B., Hacke, U.G., Pratt, R.B., Bhaskar, R., Brodribb, T.J., et al., 2016. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world's woody plant species. New Phytologist 209, 123–136.
Hietz, P., Rosner, S., Sorz, J., Mayr, S., 2008. Comparison of methods to quantify loss of hydraulic conductivity in Norway spruce. Annals of Forest Science 65, 502–508.
Hochberg, U., Herrera, J.C., Cochard, H., Badel, E., 2016. Short-time xylem relaxation results in reliable quantification of embolism in grapevine petioles and sheds new light on their hydraulic strategy. Tree Physiology 36, 748–755.
Holbrook, N.M., Ahrens, E.T., Burns, M.J., Zwieniecki, M.A., 2001. In vivo observation of cavitation and embolism repair using magnetic resonance imaging. Plant Physiology 126, 27–31.
Kiorapostolou, N., Da Sois, L., Petruzzellis, F., Savi, T., Trifilò, P., Nardini, A., Petit, G., 2019. Vulnerability to xylem embolism correlates to wood parenchyma fraction in Angiosperms but not in Gymnosperms. Tree Physiology 39, 1675–1684.
Kolb, K.J., Sperry, J.S., Lamont, B.B., 1996. A method for measuring xylem hydraulic conductance and embolism in entire root and shoot systems. Journal of Experimental Botany 47, 1805–1810.
Losso, A., Bär, A., Dämon, B., Dullin, C., Ganthaler, A., Petruzzellis, F., Savi, T., Tromba, G., Nardini, A., Mayr, S., Beikircher, B., 2019. Insights from in vivo micro-CT analysis: testing the hydraulic vulnerability segmentation in Fagus sylvatica and Acer pseudoplatanus seedlings. New Phytologist 221, 1831–1842.
Losso, A., Nardini, A., Nolf, M., Mayr, S., 2016. Elevational trends in hydraulic efficiency and safety of Pinus cembra roots. Oecologia 180, 1091–1102.
Martinez, E.M., Cancela, J.J., Cuesta, T.S., Neira, X.X., 2011. Use of psychrometers in field measurements of plant material: accuracy and handling difficulties. Spanish Journal of Agricultural Research 9, 313–328.
Meixner, M., Tomasella, M., Foerst, P., Windt, C.W., 2020. A small-scale MRI scanner and complementary imaging method to visualize and quantify xylem embolism formation. New Phytologist 226, 1517–1529.
Milburn, J.A., Johnson, R.P.C., 1966. The conduction of sap: II. Detection of vibrations produced by sap cavitation in Ricinus xylem. Planta 69, 43–52.
Nardini, A., Luglio, J., 2014. Leaf hydraulic capacity and drought vulnerability: possible trade-offs and correlations with climate across three major biomes. Functional Ecology 28, 810–818.
Netherer, S., 2022. Towards an improved understanding of bark beetle and other insect herbivore infestation in conifer forests. Die Bodenkultur 73, 135–151.
Nolf, M., Beikircher, B., Rosner, S., Nolf, A., Mayr, S., 2015. Xylem cavitation resistance can be estimated based on time-dependent rate of acoustic emissions. New Phytologist 208, 625–632.
Nolf, M., Lopez, R., Peters, J.M.R., Flavel, R.J., Koloadin, L.S., Young, I.M., Choat, B., 2017. Visualization of xylem embolism by X-ray microtomography: a direct test against hydraulic measurements. New Phtyologist 214, 890–898.
Paligi, S.S., Link, R.M., Isasa, E., Bittencourt, P., Cabral, J.S., Jansen, S., Oliveira, R.S., Pereira, L., et al., 2023. Assessing the agreement between the pneumatic and the flow-centrifuge method for estimating xylem safety in temperate diffuse-porous tree species. Plant Biology, doi:10.1111/plb.13573.
Rosner, S., Klein, A., Wimmer, R., Karlsson, B., 2006. Extraction of features from ultrasound acoustic emissions: a tool to assess the hydraulic vulnerability of Norway spruce trunkwood? New Phytologist 171, 105–116.
Rosner, S., Nöbauer, S., Voggeneder, K., 2021. Ready for screening: Fast assessable hydraulic and anatomical proxies for vulnerability to cavitation of young conifer sapwood. Forests 12, 1104.
Sack, L., Scoffoni, C., 2012. Measurement of leaf hydraulic conductance and stomatal conductance and their responses to irradiance and dehydration using the evaporative flux methods (EFM). Journal of Visualized Experiments, e4179.
Salleo, S., Hinckley, T.M., Kikuta, S.B., Lo Gullo, M.A., Weilgony, P., Yoon, T.M., Richter H., 1992. A method for inducing xylem embolism in situ: experiments with a field-grown tree. Plant, Cell and Environment 15, 491–497.
Savi, T., Bertuzzi, S., Branca, S., Tretiach, M., Nardini, A., 2015. Drought-induced xylem cavitation and hydraulic deterioration: risk factors for urban trees under climate change? New Phytologist 205, 1106–1116.
Savi, T., Love, V.L., Dal Borgo, A., Martellos, S., Nardini, A., 2017a. Morpho-anatomical and physiological traits in saplings of drought-tolerant Mediterranean woody species. Trees - Structure and Function 31, 1137–1148.
Savi, T., Miotto, A., Petruzzellis, F., Losso, A., Pacilè, S., Tromba, G., Mayr, S., Nardini, A., 2017b. Drought-induced embolism in stems of sunflower: a comparison of in vivo micro-CT observations and destructive hydraulic measurements. Plant Physiology and Biochemistry 120, 24–29.
Savi, T., Tintner, J., Da Sois, L., Grabner, M., Petit, G., Rosner, S., 2019. The potential of Mid-Infrared spectroscopy for prediction of wood density and vulnerability to embolism in woody angiosperms. Tree Physiology 39, 503–510.
Scholander, P.F., Bradstreet, E.D., Hemmingsen, E.A., Hammel, H.T., 1965. Sap pressure in vascular plants: Negative hydrostatic pressure can be measured in plants. Science 148, 339–346.
Schuster, A.C., Burghardt, M., Riedereravi, M., 2017. The ecophysiology of leaf cuticular transpiration: are cuticular water permeabilities adapted to ecological conditions? Journal of Experimental Botany 68, 5271–5279.
Sperry, J.S., Donnelly, J.R., Tyree, M.T., 1988. A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell and Environment 11, 35–40.
Théroux-Rancourt, G., Herrera, J.C., Voggeneder, K., De Berardinis, F., Luijken, N., Nocker, L., Savi, T., Scheffknecht, S., et al., 2023. Analyzing anatomy over three dimensions unpacks the differences in mesophyll diffusive area between sun and shade Vitis vinifera leaves. AOB Plants, doi: 10.1093/aobpla/plad001.
Torres-Ruiz, J.M., Cochard, H., Mayr, S., Beikircher, B., Diaz-Espejo, A., Rodriguez-Dominguez, C.M., Badel, E., Fernández, J.E., 2014. Vulnerability to cavitation in Olea europaea current-year shoots: further evidence of an open-vessel artefact associated with centrifuge and air-injection techniques. Physiologia Plantarum 152, 465–474.
Tyree, M.T., Sinclair, B., Lu, P., Granier, A., 1993. Whole shoot hydraulic resistance in Quercus species measured with a new high-pressure flowmeter. Annales Des Sciences Forestières 50, 417–423.
Venturas, M.D., Mac Kinnon, E.D., Jacobsen, A.L., Pratt, R.B., 2015. Excising stem samples under water at native tension does not induce xylem cavitation. Plant, Cell and Environment 38, 1060–1068.
Venturas, M.D., Pratt, R.B., Jacobsen, A.L., Castro, V., Fickle, J.C., Hacke, U.G., 2019. Direct comparison of four methods to construct xylem vulnerability curves: Differences among techniques are linked to vessel network characteristics. Plant, Cell and Environment 42, 2422–2436.
Venturas, M.D., Sperry, J.S., Hacke, U.G., 2017. Plant xylem hydraulics: What we understand, current research, and future challenges. Journal of Integrative Plant Biology 59, 356–389.
Wang, R., Zhang, L., Zhang, S., Cai, J., Tyree, M.T., 2014. Water relations of Robinia pseudoacacia L.: do vessels cavitate and refill diurnally or are R-shaped curves invalid in Robinia? Plant, Cell and Environment 37, 2667–2678.
Wheeler, J.K., Huggett, B.A., Tofte, A.N., Rockwell, F.E., Holbrook, N.M., 2013. Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. Plant, Cell and Environment 36, 1938–1949.
Zwieniecki, M.A., Melcher, P.J., Ahrens, E.T., 2013. Analysis of spatial and temporal dynamics of xylem refilling in Acer rubrum L. using magnetic resonance imaging. Frontiers in Plant Science 4, 165.