Have a personal or library account? Click to login
Aging concrete structures: a review of mechanics and concepts Cover
Open Access
|Nov 2018

References

  1. ACI Committee 209 (2008): Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete (No. 209.2R–08). American Concrete Institute, Farmington Hills, MI, USA.
  2. Aktan, A.E., Catbas, N.F., Grimmelsman, K.A. and C.J. Tsikos (2000): Issues in infrastructure health monitoring for management. Engineering Mechanics 126, 711–724.
  3. Alnaggar, M., Cusatis, G. and D.L. Luzio (2013): Lattice Discrete Particle Modeling (LDPM) of Alkali Silica Reaction (ASR) deterioration of concrete structures. Cement and Concrete Composites 41, 45–59.
  4. Ang, A.H.S. and W.H. Tang (2007): Probability concepts in engineering planning and design, basic principles. 2nd ed., John Wiley & Sons, Hoboken, NJ, USA.
  5. Bager, D.H. and S. Jacobsen (1999): A conceptual model for the freeze-thaw damage in concrete. In: Fridh, K. (Ed.): Proceedings of the 3rd Nordic Research Seminar, Report TVBM-3056, Lund, Sweden, pp. 1–17.
  6. Basler, E. (1961): Untersuchungen über den Sicherheitsbegriff von Bauwerken. Schweizer Archiv für angewandte Wissenschaft und Technik 4, 133–160.
  7. Basquin, O.H. (1910): The exponential law of endurance tests. American Society for Testing and Materials Proceedings 10, 625–630.
  8. Bažant, Z.P. (1972): Prediction of concrete creep effects using age-adjusted effective modulus method. American Concrete Institute Journal 69, 212–217.
  9. Bažant, Z.P. and S. Baweja (2000): Creep and shrinkage prediction model for analysis and design of concrete structures: Model B3. ACI SPECIAL PUBLICATIONS 194, 1–84.
  10. Bažant, Z.P. (2015): RILEM draft recommendation: TC-242-MDC multi-decade creep and shrinkage of concrete: material model and structural analysis. Materials and Structures 48, 753–770.
  11. Bažant, Z.P. and B. Novák (2000): Energetic-statistical size effect in quasibrittle failure at crack initiation. ACI Structural Journal 97, 381–392.
  12. Bažant, Z.P. and B.H. Oh (1983): Crack band theory for fracture of concrete. Matériaux et Constructions 16, 155–177.
  13. Bažant, Z.P. and B.H. Oh (1985): Microplane Model for Progressive Fracture of Concrete and Rock. Journal of Engineering Mechanics 111, 559–582.
  14. Bažant, Z.P. and J. Ožbolt (1992): Compression failure of quasibrittle material. Nonlocal microplane model. Journal of Engineering Mechanics 118, 540–556.
  15. Bažant, Z.P. and J. Planas (1998): Fracture and size effect in concrete and other quasibrittle materials. New Directions in Civil Engineering, Vol. 16. CRC Press, Boca Raton, FL, USA.
  16. Bažant, Z.P., Tabbara, M.R., Kazemi, M.T. and G. Pijaudier-Cabot (1990): Random particle model for fracture of aggregate or fiber composites. Journal of Engineering Mechanics 116, 1686–1705.
  17. Bažant, Z.P., Yu, Q. and G.-H. Li (2012a): Excessive longterm deflections of prestressed box girders. I: Record-Span Bridge in Palau and Other Paradigms. Journal of Structural Engineering 138, 676–686.
  18. Bažant, Z.P., Yu, Q. and G.-H. Li (2012b): Excessive longterm deflections of prestressed box girders. II: Numerical Analysis and Lessons Learned. Journal of Structural Engineering 138, 686–696.
  19. Bažant, Z.P. and J.-C. Chern (1984): Bayesian Statistical Prediction of Concrete Creep and Shrinkage. Journal of the American Concrete Institute 81, 319–330.
  20. Bažant, Z.P., Hauggaard, A.B. and S. Baweja (1997): Microprestress-solidification theory for concrete creep. II: Algorithm and verification. Journal of Engineering Mechanics 123, 1195–1201.
  21. Bažant, Z.P., Hauggaard, A.B., Baweja, S. and F.-J. Ulm (1997): Microprestress-solidification theory for concrete creep. I: Aging and drying effects. Journal of Engineering Mechanics 123, 1188–1194.
  22. Bažant, Z.P. and K. Xu (1991): Size effect in fatigue fracture of concrete. ACI Materials Journal 88, 390–399.
  23. Bažant, Z.P. and Q. Yu (2013): Relaxation of Prestressing Steel at Varying Strain and Temperature: Viscoplastic Constitutive Relation. Journal of Engineering Mechanics 139, 814–823.
  24. Beck, J.L. and L.S. Katafygiiotis (1998): Updating models and their uncertainties. I: Bayesian statistical framework. Journal of Engineering Mechanics 124, 455–461.
  25. Bergmeister, K. (1985): Stochastik in der Befestigungstechnik. Dissertation, Universität Innsbruck, Innsbruck, Austria.
  26. Bergmeister, K. and U. Santa (2004): Brückeninspektion und -überwachung. In: Bergmeister, K. and J.D. Wörner (Eds.): Betonkalender 2004 - Brücken und Parkhäuser. Ernst & Sohn, Berlin, Deutschland, pp. 409–440.
  27. Bergmeister, K. and R. Wendner (2010): Monitoring und Strukturidentifikation von Betonbrücken. In: Bergmeister, K. and J.D. Wörner (Eds.): Betonkalender 2010. Ernst & Sohn, Berlin, Deutschland, pp. 245–290.
  28. Budelmann, H., Hariri, K. and T. Starck (2008): Integration of degradation prognosis of concrete structures into life cycle management. In: Biondini, F. and D. Frangopol (Eds.): Life-Cycle Civil Engineering. Taylor & Francis Group, London, UK, pp. 299–304.
  29. Cervera, M. and J. Oliver (1999): Thermo-chemicalmechanical model for concrete. I: Hydration aging. Journal of Engineering Mechanics 125, 1018–1027.
  30. Cornell, A.C. (1969): A Probability Based Structural Code. ACI Journal 66, 974–985.
  31. Cusatis, G., Mencarelli, A., Pelessone, D. and J. Baylot (2011): Lattice Discrete Particle Model (LDPM) for failure behavior of concrete. II: Calibration and validation. Cement and Concrete Composites 33, 891–905.
  32. Cusatis, G., Rezakhani, R., Alnaggar, M., Zhou, Z. and D. Pelessone (2014): Multiscale computational models for the simulation of concrete materials and structures. In: Bicanic, N., Mang, H., Meschke, G. and R. de Borst (Eds): Proceedings of EURO-C 2014, Computational Modelling of Concrete and Concrete Structures, CRC Press/Taylor & Francis Group, pp. 23–38.
  33. De Borst, R., Gutièrrez, M. A., Wells, G.N., Remmers, J. and H. Askes (2004): Cohesive-zone models, higher-order continuum theories and reliability methods for computational failure analysis. International Journal for Numerical Methods in Engineering 60, 289–315.
  34. Di Luzio, G. and G. Cusatis (2009): Hygro-thermo-chemical modeling of high performance concrete. I: Theory. Cement and Concrete Composites 31, 301–308.
  35. Di Luzio, G. and G. Cusatis (2013): Solidification-microprestress-microplane (SMM) theory for concrete at early age: Theory, validation and application. International Journal of Solids and Structures 50, 957–975.
  36. Di Luzio, G., L. Ferrara and V. Krelani (2018): Numerical modeling of mechanical regain due to self-healing in cement-based composites. Cement and Concrete Composites, 86, 190–205.
  37. Dutfoy, A. and R. Lebrun (2009): Practical approach to dependence modelling using copulas. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 223, 347–361.
  38. Edvardsen C. (1999): Water permeability and autogenous healing of cracks in concrete, ACI Matererials J. 96, 448-455.
  39. Embrechts, P., Lindskog, F. and A. McNeil (2003): Modelling dependence with copulas and applications to risk management. In: Svetlozar, T.R. (Ed.): Handbook of Heavy Tailed Distributions in Finance, Volume 1: Handbooks in Finance, Book 1. North-Holland, Amsterdam, The Netherlands, pp. 329–384.
  40. Eshelby, J.D. (1958): The determination of the elastic field of an ellipsoidal inclusion and related problems. Proceedings of the Royal Society of London Series A 241, 376–396.
  41. Ettemeyer, A. (1988): Ein neues holografisches Verfahren zur Verformungs- und Dehnungsbestimmung. Dissertation, Universität Stuttgart, Stuttgart, Deutschland.
  42. Eurocodes (2002): EN 1990:2002 Eurocode - Basis of structural design.
  43. Feyel, F. (2003): A multilevel finite element method (fe2) to describe the response of highly non-linear structures using generalized continua. Computer Methods in Applied Mechanics and Engineering 192, 3233–3244.
  44. fib (2013): fib Model Code for Concrete Structures 2010. Wilhelm Ernst & Sohn, Berlin, Deutschland.
  45. Fish, J. and A. Wagiman (1992): Multi-scale finite element method for a periodic and nonperiodic heterogeneous medium. Adaptive Multilevel and Hierarchical Computational Strategies 157, 95–117.
  46. Frangopol, D.M. (2011): Life-Cycle Performance, Management, and Optimization of Structural Systems under Uncertainty: Accomplishments and Challenges. Structure and Infrastructure Engineering 7, 389–413.
  47. Frangopol, D.M. and A.C. Estes (1999): Repair Optimization of Highway Bridges Using System Reliability Approach. Journal of Structural Engineering 125, 766–775.
  48. Frangopol, D.M. and T.B. Messervey (2009): Maintenance Principles for Civil Structures. In: Boller, C., Chang, F.-K. and Y. Fujino (Eds.): Encyclopedia of Structural Health Monitoring (Vol. 4). John Willey & Sons, Chicester, UK, pp. 1533–1562.
  49. Frangopol, D.M. and N.M. Okasha (2008): Life-cycle performance and redundancy of structures. In: Graubner, C.A., Schmidt H. and D. Proske (Eds.): Proceedings of the 6th International Probabilistic Workshop. Technische Universität Darmstadt, Darmstadt, Germany, pp. 1–14.
  50. Furuta, H., Kameda, T., Fukuda, Y. and D.M. Frangopol (2003): Life-cycle cost analysis for infrastructure systems: Life cycle cost vs. safety level vs. service life. Life-Cycle Performance of Deteriorating Structures: Assessment, Design and Management, 24–26 March 2003, Lausanne, Switzerland, 19–25.
  51. Gardner, N.J. and M.J. Lockman (2001): Design provisions for drying shrinkage and creep of normal-strength concrete. ACI Materials Journal 98, 159–167.
  52. Gerber, H. (1874): Bestimmung der zulässigen Spannungen in Eisenkonstruktionen. Zeitschrift Des Bayerischen Architekten Und Ingenieur-Vereins 6, 101–110.
  53. Gul, M. and N.F. Catbas (2008): Ambient Vibration data analysis for structural identification and global condition assessment. Journal of Engineering Mechanics 134, 650–662.
  54. Gumbel, E.J. (1959): Statistics of Extremes. Columbia University Press, NY, USA.
  55. Hashin, Z. and S. Strikman (1963): A variational approach to the theory of the elastic behavior of multiphase materials. Journal of the Mechanics and Physics of Solids 11, 127–140.
  56. Herrmann, M. and W. Sobek (2016): Functionally graded concrete: Numerical design methods and experimental tests of mass-optimized structural components. Structural Concrete 18, 54–66.
  57. Hillerborg, A., Modéer, M. and P.E. Petersson (1976): Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research 6, 773–781.
  58. Hilsdorf, H.K., Lorman, W.R. and G.E. Monfore (1973): Triaxial Testing of Nonreinforced Concrete Specimens. Journal Testing & Evaluation 1, 330–335.
  59. Hironaka, M.C. and L.J. Malvar (1998): Jet exhaust-damaged concrete. Concrete International 20, 32–35.
  60. Hoffmann, S. (2008): System identification by directly measured influence lines - A user orientated approach for global damage identification at reinforced concrete bridges. PhD Thesis, Universität für Bodenkultur, Wien.
  61. Hoffmann, S., Wendner, R., Strauss, A., Ralbovsky, M. and K. Bergmeister (2007): AIFIT - Anwenderorientierte Identifikation für Ingenieurtragwerke, versuchsgestützte Steifigkeitsanalysen. Beton- und Stahlbetonbau 102, 699–706.
  62. Hoffmann, S., Wendner, R., Strauss, A. and W. Steinhauser (2009): AIFIT - Anwenderorientierte Identifikation für Ingenieurtragwerke: Feldversuch. Beton- und Stahlbetonbau 104, 113–120.
  63. Hoover, C.G., Bažant, Z.P., Vorel, J., Wendner, R. and M.H. Hubler (2013): Comprehensive concrete fracture tests: Description and results. Engineering Fracture Mechanics 114, 92–103.
  64. Hubler, M.H., Wendner, R. and Z.P. Bažant (2015): Statistical Justification of Model B4 for Drying and Autogenous Shrinkage of Concrete and Comparisons to Other Models. Materials and Structures 48, 797–814.
  65. Iman, R.L. and W.J. Conover (1982): A distribution-free approach to inducing rank correlation among input variables. Communications in Statistics-Simulation and Computation 11, 311–334.
  66. Iman, R.L., Helton, J.C. and J.E. Campbell (1981): An approach to sensitivity analysis of computer- models, Part 1. Introduction, input variable selection and preliminary variable assessment. Journal of Quality Technology 13, 174–183.
  67. Irwin, G. (1958): Fracture. In: Flügge, E. (Ed.): Hand-buch der Physik, Vol. 6. Springer, Berlin, Deutschland, pp. 551–590.
  68. Jirásek, M. (1998): Nonlocal models for damage and fracture: comparison of approaches. International Journal of Solids and Structures 35, 4133–4145.
  69. Jirásek, M. and Z.P. Bažant (2002): Inelastic Analysis of Structures. John Wiley & Sons, London.
  70. Le, J.L. and Z.P. Bažant (2011): Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: II. Fatigue crack growth, lifetime and scaling. Journal of the Mechanics and Physics of Solids 59, 1322–1337.
  71. Le, J.L., Bažant, Z.P. and M.Z. Bazant (2011): Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: I. Strength, static crack growth, lifetime and scaling. Journal of the Mechanics and Physics of Solids 59, 1291–1321.
  72. Luenberger, D.G. (1989): Linear and Nonlinear Programming. 2nd ed., Addison-Wesley, Boston, USA.
  73. Magura, D.D., Sozen, M.A. and C.P. Siess (1964): A study of stress relaxation in prestressing reinforcement. PCI Journal 9, 13–57.
  74. Malhotra, V.M. and N.J. Carino (2003): Handbook on Nondestructive Testing of Concrete. CRC Press, Boca Raton, FL, USA.
  75. Malmqvist, T., Glaumann, M., Scarpellini, S., Zabalza, I., Aranda, A., Llera, E. and S. Dísaz (2011): Life cycle assessment in buildings: The ENSLIC simplified method and guidelines. 5th Dubrovnik Conference on Sustainable Development of Energy, Water & Environment Systems 36, 1900–1907.
  76. Mark, P., Stangenberg, F., Bergmeister, K., Strauss, A. and M.A. Ahrens (2013): Lebensdauerorientierter Entwurf, Konstruktion, Nachrechnung Grundlagen und numerische Simulation, Ingenieurwissenschaftliche und baupraktische Methoden. In: Bergmeister, K., Finger-loos, F. and J.D. Wörner (Eds.): Betonkalender 2013: Lebensdauer und Instandsetzung - Brandschutz. Ernst & Sohn, Berlin, Deutschland.
  77. Matthies, H.G. and A. Keese (2005): Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Computer Methods in Applied Mechanics and Engineering 194, 1295–1331.
  78. Matthews, S. (2007): CONREPNET: Performance-based approach to the remediation of reinforced concrete structures: Achieving durable repaired concrete structures. Journal of Building Appraisal 3, 6–20.
  79. Mazurek, D.F. and J.T. De Wolf (1990): Experimental study of bridge monitoring technique. Journal of Structural Engineering 116, 2532–2549.
  80. Mckay, M.D., Beckman, R.J. and W.J. Conover (2000): A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42, 55–61.
  81. Miehe, C., Schröder, J. and J. Schotte (1999): Computational homogenization analysis in finite plasticity Simulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171, 387–418.
  82. Moës, N., Dolbow, J. and T. Belytschko (1999): A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46, 131–150.
  83. Mörth, W., Haberland, C., Harvath, J. and A. Mayer (2005): Behavior of optimized tunnel concrete with special aggregates at high temperatures. In: Proceedings of Central European Congress on Concrete Engineering, 8–9 September 2005, Graz, pp. 41–50.
  84. Okasha, N.M. and D.M. Frangopol (2010): Novel Approach for Multicriteria Optimization of Life-Cycle Preventive and Essential Maintenance of Deteriorating Structures. Journal of Structural Engineering 136, 1009–1022.
  85. Ostoja-Starzewski, M. (1998): Random fields of heterogenous materials. International Journal Solids Structures 35, 2429–2455.
  86. Papadakis, V. G., Roumeliotis, A. P., Fardis, C. G. and C. Vagenas (1996): Mathematical modeling of chloride effect on concrete durability and protection measures. In: Dhir R.K. and M.R. Jones (Eds.): Concrete Repair, Rehabilitation and Protection. E & FN Spon, London, UK, pp. 165–174.
  87. Paris, P.C. and F. Erdogan (1963): A critical analysis of crack propagation law. Journal of Basic Engineering 85, 528–534.
  88. Peters, W.H. and W.F. Ranson (1982): Digital imaging techniques in experimental mechanics. Optical Engineering 21, 427–431.
  89. Petryna, Y.S. (2004): Schädigung, Versagen und Zuverlässigkeit von Tragwerken des Konstruktiven Ingenieurbaus. Habilitationssschrift, Ruhr-Universität Bochum.
  90. Reiterer, M., Altay, O., Wendner, R., Hoffmann, S. and A. Strauss (2008): Adaptive Flüssigkeitstilger für Vertikalschwingungen von Ingenieurstrukturen, Teil 2 - Feldversuche. Stahlbau 77, 205–212.
  91. Salviato, M. and Z.P. Bažant (2014): The asymptotic stochastic strength of bundles of elements exhibiting general stress–strain laws. Probabilistic Engineering Mechanics 36, 1–7.
  92. Sansalone, M. and W. Streett (1997): Impact-Echo. Bullbrier Press, Jersey Shore, PA, USA.
  93. Schiessel, P. and M. Raupach (1997): Laboratory studies and calculations on the influence of crack width on chloride-induced corrosion of steel in concrete. ACI Material Journal 94, 56–62.
  94. Strauss, A., Bergmeister, K., Wendner, R. and S. Hoffmann (2009): System- und Schadensidentifikation von Betonstrukturen. In: Bergmeister, K. and J.D. Wörner (Eds.): Betonkalender 2009. Ernst & Sohn, Berlin, Deutschland, pp. 55–125.
  95. Strauss, A., Hoffmann, S., Wendner, R. and K. Bergmeister (2009): Structural assessment and reliability analysis for existing engineering structures, applications for real structures. Structure and Infrastructure Engineering 5, 277–286.
  96. Strauss, A., Wendner, R., Bergmeister, K., Adley, M. and J. Horvatits (2011): Monitoring and influence lines based performance indicators. Beton- und Stahlbetonbau 106, 231–240.
  97. Strauss, A., Wendner, R., Bergmeister, K. and C. Costa (2013): Numerically and experimentally based reliability assessment of a concrete bridge subjected to chloride–induced deterioration. Journal of Infrastructure Systems 19, 166–175.
  98. Strauss, A., Wendner, R., Frangopol, D.M. and K. Bergmeister (2012): Influence line–model correction approach for the assessment of engineering structures using novel monitoring techniques. Smart Structures and Systems 9, 1–20.
  99. Strieder. E., Hilber, R., Stierschneider, E. and K. Bergmeister (2018): FE-Study on the Effect of Gradient Concrete on Early Constraint and Crack Risk. Applied Sciences 8, 246.
  100. Taylor, G. (1938): Plastic strain in metals. Journal Institution Material 63, 307–324.
  101. Tuutti, K. (1982): Corrosion of steel in concrete. Swedish Cement and Concrete Research Institute, Stockholm, Sweden.
  102. Ulm, F.J. and O. Coussy (1995): Modeling of thermo-chemicalmechanical couplings of concrete at early age. Journal of Engineering Mechanics 121, 785–794.
  103. Val, D.V. and M.G. Stewart (2003): Life-cycle cost analysis of reinforced concrete structures in marine environments. Structural Safety 25, 343–362.
  104. van Tittelboom K. and N. de Belie (2013): Self-healing in cementitious materials- a review. Materials 6, 2182–2217.
  105. Vořechovský, M. (2004): Stochastic fracture mechanics and size effect. Dissertation, Brno University of Technology, Brno, Czech Republic.
  106. Vořechovský, M. and D. Novák (2009): Correlation control in small-sample Monte Carlo type simulations I: A simulated annealing approach. Probabilistic Engineering Mechanics 24, 452–462.
  107. Vorel, J., Šmilauer, V. and Z. Bittnar (2012): Multiscale simulations of concrete mechanical tests. Journal of Computational and Applied Mathematics 236, 4882–4892.
  108. Vrouwenvelder, T. (1997): The JCSS probabilistic model code. Structural Safety 19, 245–251.
  109. Wöhler, A. (1860): Versuche über die Festigkeit der Eisenbahnwagenachsen, English Summary. Zeitschrift Für Bauwesen 4, 160–161.
  110. Wan, L., Wendner, R., Wang, Y. and G. Cusatis (2016): Analysis of the Behavior of Ultra High Performance Concrete at Early Age. Cement & Concrete Composites, 74, 120–135.
  111. Wegner, M. (1998): Spezielle Anwendungen der Radiographie und der Computer-Tomographie mit Neutronen. Dissertation, Technische Universität München, Mün-chen, Deutschland.
  112. Weibull, W. (1951): Wide applicability. Journal of Applied Mechanics 18, 293–297.
  113. Wendner, R. (2009): Modale Steifigkeitsidentifikation zur Zustandsbewertung von Strukturen aus Konstruktionsbeton. Dissertation, Universität für Bodenkultur Wien, Wien, Österreich.
  114. Wendner, R., Hubler, M.H. and Z.P. Bažant (2015a): Optimization method, choice of form and uncertainty quantification of Model B4 using laboratory and multidecade bridge databases. Materials and Structures 48, 771–796.
  115. Wendner, R., Hubler, M.H. and Z.P. Bažant (2015b): Statistical justification of Model B4 for multi-decade concrete creep using laboratory and bridge databases and comparisons to other models. Materials and Structures 48, 815–833.
  116. Wendner, R., Reiterer, M., Hoffmann, S., Strauss, A. and K. Bergmeister (2007): Adaptive tuned liquid column dampers for structures, Part I - Laboratory tests. Stahlbau 76, 916–923.
  117. Wendner, R. and A. Strauss (2015): Inclined Approach Slab Solution for Jointless Bridges: Performance Assessment of the Soil–Structure Interaction. Journal of Performance of Constructed Facilities 29, 04014045.
  118. Wendner, R., Strauss, A., Bergmeister, K. and D.M. Frangopol (2010): Monitoring based evaluation of design criteria for concrete frame bridges. In: IABSE, AIPC, IVBH and I. Symposium-Venice 2010 (Eds.): Large Structures and Infrastructures for Environmentally Constrained and Urbanised Areas. IABSE Symposium Venice 2010. IABSE, Zürich, Switzerland.
  119. Wendner, R., Tong, T., Strauss, A. and Q. Yu (2015): A case study on correlations of axial shortening and deflection with concrete creep asymptote in segmentallyerected prestressed box girders. Structure and Infrastructure Engineering 11, 1672–1687.
  120. Wendner, R., Vorel, J., Smith, J., Hoover, C.G., Bažant, Z.P. and G. Cusatis (2014): Characterization of concrete failure behavior: a comprehensive experimental database for the calibration and validation of concrete models. Materials and Structures, 1–24.
  121. Wenig, C.C., Tam, M.T. and G.C. Lin (1992): Acoustic emission characteristics of mortar under compression. Cement and Concrete Research 22, 641–652.
  122. Yu, Q., Bažant, Z.P. and R. Wendner (2012): Improved algorithm for efficient and realistic creep analysis of large creep-sensitive concrete structures. ACI Structural Journal 109, 665–676.
  123. Zhu, B. and D.M. Frangopol (2012): Reliability, redundancy and risk as performance indicators of structural systems during their life-cycle. Engineering Structures 41, 34–49.
  124. Zilch, K., Weiher, H. and C. Gläser (2009): Monitoring im Betonbau. In: Bergmeister, K., Fingerloos, F. and J.D. Wörner (Eds.): Betonkalender 2009. Ernst & Sohn, Berlin, Deutschland.
DOI: https://doi.org/10.2478/boku-2018-0015 | Journal eISSN: 2719-5430 | Journal ISSN: 0006-5471
Language: English
Page range: 175 - 199
Submitted on: Jul 5, 2018
Accepted on: Sep 27, 2018
Published on: Nov 30, 2018
Published by: Universität für Bodenkultur Wien
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Roman Wan-Wendner, published by Universität für Bodenkultur Wien
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.