References
- ACI Committee 209 (2008): Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete (No. 209.2R–08). American Concrete Institute, Farmington Hills, MI, USA.
- Aktan, A.E., Catbas, N.F., Grimmelsman, K.A. and C.J. Tsikos (2000): Issues in infrastructure health monitoring for management. Engineering Mechanics 126, 711–724.
- Alnaggar, M., Cusatis, G. and D.L. Luzio (2013): Lattice Discrete Particle Modeling (LDPM) of Alkali Silica Reaction (ASR) deterioration of concrete structures. Cement and Concrete Composites 41, 45–59.
- Ang, A.H.S. and W.H. Tang (2007): Probability concepts in engineering planning and design, basic principles. 2nd ed., John Wiley & Sons, Hoboken, NJ, USA.
- Bager, D.H. and S. Jacobsen (1999): A conceptual model for the freeze-thaw damage in concrete. In: Fridh, K. (Ed.): Proceedings of the 3rd Nordic Research Seminar, Report TVBM-3056, Lund, Sweden, pp. 1–17.
- Basler, E. (1961): Untersuchungen über den Sicherheitsbegriff von Bauwerken. Schweizer Archiv für angewandte Wissenschaft und Technik 4, 133–160.
- Basquin, O.H. (1910): The exponential law of endurance tests. American Society for Testing and Materials Proceedings 10, 625–630.
- Bažant, Z.P. (1972): Prediction of concrete creep effects using age-adjusted effective modulus method. American Concrete Institute Journal 69, 212–217.
- Bažant, Z.P. and S. Baweja (2000): Creep and shrinkage prediction model for analysis and design of concrete structures: Model B3. ACI SPECIAL PUBLICATIONS 194, 1–84.
- Bažant, Z.P. (2015): RILEM draft recommendation: TC-242-MDC multi-decade creep and shrinkage of concrete: material model and structural analysis. Materials and Structures 48, 753–770.
- Bažant, Z.P. and B. Novák (2000): Energetic-statistical size effect in quasibrittle failure at crack initiation. ACI Structural Journal 97, 381–392.
- Bažant, Z.P. and B.H. Oh (1983): Crack band theory for fracture of concrete. Matériaux et Constructions 16, 155–177.
- Bažant, Z.P. and B.H. Oh (1985): Microplane Model for Progressive Fracture of Concrete and Rock. Journal of Engineering Mechanics 111, 559–582.
- Bažant, Z.P. and J. Ožbolt (1992): Compression failure of quasibrittle material. Nonlocal microplane model. Journal of Engineering Mechanics 118, 540–556.
- Bažant, Z.P. and J. Planas (1998): Fracture and size effect in concrete and other quasibrittle materials. New Directions in Civil Engineering, Vol. 16. CRC Press, Boca Raton, FL, USA.
- Bažant, Z.P., Tabbara, M.R., Kazemi, M.T. and G. Pijaudier-Cabot (1990): Random particle model for fracture of aggregate or fiber composites. Journal of Engineering Mechanics 116, 1686–1705.
- Bažant, Z.P., Yu, Q. and G.-H. Li (2012a): Excessive longterm deflections of prestressed box girders. I: Record-Span Bridge in Palau and Other Paradigms. Journal of Structural Engineering 138, 676–686.
- Bažant, Z.P., Yu, Q. and G.-H. Li (2012b): Excessive longterm deflections of prestressed box girders. II: Numerical Analysis and Lessons Learned. Journal of Structural Engineering 138, 686–696.
- Bažant, Z.P. and J.-C. Chern (1984): Bayesian Statistical Prediction of Concrete Creep and Shrinkage. Journal of the American Concrete Institute 81, 319–330.
- Bažant, Z.P., Hauggaard, A.B. and S. Baweja (1997): Microprestress-solidification theory for concrete creep. II: Algorithm and verification. Journal of Engineering Mechanics 123, 1195–1201.
- Bažant, Z.P., Hauggaard, A.B., Baweja, S. and F.-J. Ulm (1997): Microprestress-solidification theory for concrete creep. I: Aging and drying effects. Journal of Engineering Mechanics 123, 1188–1194.
- Bažant, Z.P. and K. Xu (1991): Size effect in fatigue fracture of concrete. ACI Materials Journal 88, 390–399.
- Bažant, Z.P. and Q. Yu (2013): Relaxation of Prestressing Steel at Varying Strain and Temperature: Viscoplastic Constitutive Relation. Journal of Engineering Mechanics 139, 814–823.
- Beck, J.L. and L.S. Katafygiiotis (1998): Updating models and their uncertainties. I: Bayesian statistical framework. Journal of Engineering Mechanics 124, 455–461.
- Bergmeister, K. (1985): Stochastik in der Befestigungstechnik. Dissertation, Universität Innsbruck, Innsbruck, Austria.
- Bergmeister, K. and U. Santa (2004): Brückeninspektion und -überwachung. In: Bergmeister, K. and J.D. Wörner (Eds.): Betonkalender 2004 - Brücken und Parkhäuser. Ernst & Sohn, Berlin, Deutschland, pp. 409–440.
- Bergmeister, K. and R. Wendner (2010): Monitoring und Strukturidentifikation von Betonbrücken. In: Bergmeister, K. and J.D. Wörner (Eds.): Betonkalender 2010. Ernst & Sohn, Berlin, Deutschland, pp. 245–290.
- Budelmann, H., Hariri, K. and T. Starck (2008): Integration of degradation prognosis of concrete structures into life cycle management. In: Biondini, F. and D. Frangopol (Eds.): Life-Cycle Civil Engineering. Taylor & Francis Group, London, UK, pp. 299–304.
- Cervera, M. and J. Oliver (1999): Thermo-chemicalmechanical model for concrete. I: Hydration aging. Journal of Engineering Mechanics 125, 1018–1027.
- Cornell, A.C. (1969): A Probability Based Structural Code. ACI Journal 66, 974–985.
- Cusatis, G., Mencarelli, A., Pelessone, D. and J. Baylot (2011): Lattice Discrete Particle Model (LDPM) for failure behavior of concrete. II: Calibration and validation. Cement and Concrete Composites 33, 891–905.
- Cusatis, G., Rezakhani, R., Alnaggar, M., Zhou, Z. and D. Pelessone (2014): Multiscale computational models for the simulation of concrete materials and structures. In: Bicanic, N., Mang, H., Meschke, G. and R. de Borst (Eds): Proceedings of EURO-C 2014, Computational Modelling of Concrete and Concrete Structures, CRC Press/Taylor & Francis Group, pp. 23–38.
- De Borst, R., Gutièrrez, M. A., Wells, G.N., Remmers, J. and H. Askes (2004): Cohesive-zone models, higher-order continuum theories and reliability methods for computational failure analysis. International Journal for Numerical Methods in Engineering 60, 289–315.
- Di Luzio, G. and G. Cusatis (2009): Hygro-thermo-chemical modeling of high performance concrete. I: Theory. Cement and Concrete Composites 31, 301–308.
- Di Luzio, G. and G. Cusatis (2013): Solidification-microprestress-microplane (SMM) theory for concrete at early age: Theory, validation and application. International Journal of Solids and Structures 50, 957–975.
- Di Luzio, G., L. Ferrara and V. Krelani (2018): Numerical modeling of mechanical regain due to self-healing in cement-based composites. Cement and Concrete Composites, 86, 190–205.
- Dutfoy, A. and R. Lebrun (2009): Practical approach to dependence modelling using copulas. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 223, 347–361.
- Edvardsen C. (1999): Water permeability and autogenous healing of cracks in concrete, ACI Matererials J. 96, 448-455.
- Embrechts, P., Lindskog, F. and A. McNeil (2003): Modelling dependence with copulas and applications to risk management. In: Svetlozar, T.R. (Ed.): Handbook of Heavy Tailed Distributions in Finance, Volume 1: Handbooks in Finance, Book 1. North-Holland, Amsterdam, The Netherlands, pp. 329–384.
- Eshelby, J.D. (1958): The determination of the elastic field of an ellipsoidal inclusion and related problems. Proceedings of the Royal Society of London Series A 241, 376–396.
- Ettemeyer, A. (1988): Ein neues holografisches Verfahren zur Verformungs- und Dehnungsbestimmung. Dissertation, Universität Stuttgart, Stuttgart, Deutschland.
- Eurocodes (2002): EN 1990:2002 Eurocode - Basis of structural design.
- Feyel, F. (2003): A multilevel finite element method (fe2) to describe the response of highly non-linear structures using generalized continua. Computer Methods in Applied Mechanics and Engineering 192, 3233–3244.
- fib (2013): fib Model Code for Concrete Structures 2010. Wilhelm Ernst & Sohn, Berlin, Deutschland.
- Fish, J. and A. Wagiman (1992): Multi-scale finite element method for a periodic and nonperiodic heterogeneous medium. Adaptive Multilevel and Hierarchical Computational Strategies 157, 95–117.
- Frangopol, D.M. (2011): Life-Cycle Performance, Management, and Optimization of Structural Systems under Uncertainty: Accomplishments and Challenges. Structure and Infrastructure Engineering 7, 389–413.
- Frangopol, D.M. and A.C. Estes (1999): Repair Optimization of Highway Bridges Using System Reliability Approach. Journal of Structural Engineering 125, 766–775.
- Frangopol, D.M. and T.B. Messervey (2009): Maintenance Principles for Civil Structures. In: Boller, C., Chang, F.-K. and Y. Fujino (Eds.): Encyclopedia of Structural Health Monitoring (Vol. 4). John Willey & Sons, Chicester, UK, pp. 1533–1562.
- Frangopol, D.M. and N.M. Okasha (2008): Life-cycle performance and redundancy of structures. In: Graubner, C.A., Schmidt H. and D. Proske (Eds.): Proceedings of the 6th International Probabilistic Workshop. Technische Universität Darmstadt, Darmstadt, Germany, pp. 1–14.
- Furuta, H., Kameda, T., Fukuda, Y. and D.M. Frangopol (2003): Life-cycle cost analysis for infrastructure systems: Life cycle cost vs. safety level vs. service life. Life-Cycle Performance of Deteriorating Structures: Assessment, Design and Management, 24–26 March 2003, Lausanne, Switzerland, 19–25.
- Gardner, N.J. and M.J. Lockman (2001): Design provisions for drying shrinkage and creep of normal-strength concrete. ACI Materials Journal 98, 159–167.
- Gerber, H. (1874): Bestimmung der zulässigen Spannungen in Eisenkonstruktionen. Zeitschrift Des Bayerischen Architekten Und Ingenieur-Vereins 6, 101–110.
- Gul, M. and N.F. Catbas (2008): Ambient Vibration data analysis for structural identification and global condition assessment. Journal of Engineering Mechanics 134, 650–662.
- Gumbel, E.J. (1959): Statistics of Extremes. Columbia University Press, NY, USA.
- Hashin, Z. and S. Strikman (1963): A variational approach to the theory of the elastic behavior of multiphase materials. Journal of the Mechanics and Physics of Solids 11, 127–140.
- Herrmann, M. and W. Sobek (2016): Functionally graded concrete: Numerical design methods and experimental tests of mass-optimized structural components. Structural Concrete 18, 54–66.
- Hillerborg, A., Modéer, M. and P.E. Petersson (1976): Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research 6, 773–781.
- Hilsdorf, H.K., Lorman, W.R. and G.E. Monfore (1973): Triaxial Testing of Nonreinforced Concrete Specimens. Journal Testing & Evaluation 1, 330–335.
- Hironaka, M.C. and L.J. Malvar (1998): Jet exhaust-damaged concrete. Concrete International 20, 32–35.
- Hoffmann, S. (2008): System identification by directly measured influence lines - A user orientated approach for global damage identification at reinforced concrete bridges. PhD Thesis, Universität für Bodenkultur, Wien.
- Hoffmann, S., Wendner, R., Strauss, A., Ralbovsky, M. and K. Bergmeister (2007): AIFIT - Anwenderorientierte Identifikation für Ingenieurtragwerke, versuchsgestützte Steifigkeitsanalysen. Beton- und Stahlbetonbau 102, 699–706.
- Hoffmann, S., Wendner, R., Strauss, A. and W. Steinhauser (2009): AIFIT - Anwenderorientierte Identifikation für Ingenieurtragwerke: Feldversuch. Beton- und Stahlbetonbau 104, 113–120.
- Hoover, C.G., Bažant, Z.P., Vorel, J., Wendner, R. and M.H. Hubler (2013): Comprehensive concrete fracture tests: Description and results. Engineering Fracture Mechanics 114, 92–103.
- Hubler, M.H., Wendner, R. and Z.P. Bažant (2015): Statistical Justification of Model B4 for Drying and Autogenous Shrinkage of Concrete and Comparisons to Other Models. Materials and Structures 48, 797–814.
- Iman, R.L. and W.J. Conover (1982): A distribution-free approach to inducing rank correlation among input variables. Communications in Statistics-Simulation and Computation 11, 311–334.
- Iman, R.L., Helton, J.C. and J.E. Campbell (1981): An approach to sensitivity analysis of computer- models, Part 1. Introduction, input variable selection and preliminary variable assessment. Journal of Quality Technology 13, 174–183.
- Irwin, G. (1958): Fracture. In: Flügge, E. (Ed.): Hand-buch der Physik, Vol. 6. Springer, Berlin, Deutschland, pp. 551–590.
- Jirásek, M. (1998): Nonlocal models for damage and fracture: comparison of approaches. International Journal of Solids and Structures 35, 4133–4145.
- Jirásek, M. and Z.P. Bažant (2002): Inelastic Analysis of Structures. John Wiley & Sons, London.
- Le, J.L. and Z.P. Bažant (2011): Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: II. Fatigue crack growth, lifetime and scaling. Journal of the Mechanics and Physics of Solids 59, 1322–1337.
- Le, J.L., Bažant, Z.P. and M.Z. Bazant (2011): Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: I. Strength, static crack growth, lifetime and scaling. Journal of the Mechanics and Physics of Solids 59, 1291–1321.
- Luenberger, D.G. (1989): Linear and Nonlinear Programming. 2nd ed., Addison-Wesley, Boston, USA.
- Magura, D.D., Sozen, M.A. and C.P. Siess (1964): A study of stress relaxation in prestressing reinforcement. PCI Journal 9, 13–57.
- Malhotra, V.M. and N.J. Carino (2003): Handbook on Nondestructive Testing of Concrete. CRC Press, Boca Raton, FL, USA.
- Malmqvist, T., Glaumann, M., Scarpellini, S., Zabalza, I., Aranda, A., Llera, E. and S. Dísaz (2011): Life cycle assessment in buildings: The ENSLIC simplified method and guidelines. 5th Dubrovnik Conference on Sustainable Development of Energy, Water & Environment Systems 36, 1900–1907.
- Mark, P., Stangenberg, F., Bergmeister, K., Strauss, A. and M.A. Ahrens (2013): Lebensdauerorientierter Entwurf, Konstruktion, Nachrechnung Grundlagen und numerische Simulation, Ingenieurwissenschaftliche und baupraktische Methoden. In: Bergmeister, K., Finger-loos, F. and J.D. Wörner (Eds.): Betonkalender 2013: Lebensdauer und Instandsetzung - Brandschutz. Ernst & Sohn, Berlin, Deutschland.
- Matthies, H.G. and A. Keese (2005): Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Computer Methods in Applied Mechanics and Engineering 194, 1295–1331.
- Matthews, S. (2007): CONREPNET: Performance-based approach to the remediation of reinforced concrete structures: Achieving durable repaired concrete structures. Journal of Building Appraisal 3, 6–20.
- Mazurek, D.F. and J.T. De Wolf (1990): Experimental study of bridge monitoring technique. Journal of Structural Engineering 116, 2532–2549.
- Mckay, M.D., Beckman, R.J. and W.J. Conover (2000): A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42, 55–61.
- Miehe, C., Schröder, J. and J. Schotte (1999): Computational homogenization analysis in finite plasticity Simulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171, 387–418.
- Moës, N., Dolbow, J. and T. Belytschko (1999): A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46, 131–150.
- Mörth, W., Haberland, C., Harvath, J. and A. Mayer (2005): Behavior of optimized tunnel concrete with special aggregates at high temperatures. In: Proceedings of Central European Congress on Concrete Engineering, 8–9 September 2005, Graz, pp. 41–50.
- Okasha, N.M. and D.M. Frangopol (2010): Novel Approach for Multicriteria Optimization of Life-Cycle Preventive and Essential Maintenance of Deteriorating Structures. Journal of Structural Engineering 136, 1009–1022.
- Ostoja-Starzewski, M. (1998): Random fields of heterogenous materials. International Journal Solids Structures 35, 2429–2455.
- Papadakis, V. G., Roumeliotis, A. P., Fardis, C. G. and C. Vagenas (1996): Mathematical modeling of chloride effect on concrete durability and protection measures. In: Dhir R.K. and M.R. Jones (Eds.): Concrete Repair, Rehabilitation and Protection. E & FN Spon, London, UK, pp. 165–174.
- Paris, P.C. and F. Erdogan (1963): A critical analysis of crack propagation law. Journal of Basic Engineering 85, 528–534.
- Peters, W.H. and W.F. Ranson (1982): Digital imaging techniques in experimental mechanics. Optical Engineering 21, 427–431.
- Petryna, Y.S. (2004): Schädigung, Versagen und Zuverlässigkeit von Tragwerken des Konstruktiven Ingenieurbaus. Habilitationssschrift, Ruhr-Universität Bochum.
- Reiterer, M., Altay, O., Wendner, R., Hoffmann, S. and A. Strauss (2008): Adaptive Flüssigkeitstilger für Vertikalschwingungen von Ingenieurstrukturen, Teil 2 - Feldversuche. Stahlbau 77, 205–212.
- Salviato, M. and Z.P. Bažant (2014): The asymptotic stochastic strength of bundles of elements exhibiting general stress–strain laws. Probabilistic Engineering Mechanics 36, 1–7.
- Sansalone, M. and W. Streett (1997): Impact-Echo. Bullbrier Press, Jersey Shore, PA, USA.
- Schiessel, P. and M. Raupach (1997): Laboratory studies and calculations on the influence of crack width on chloride-induced corrosion of steel in concrete. ACI Material Journal 94, 56–62.
- Strauss, A., Bergmeister, K., Wendner, R. and S. Hoffmann (2009): System- und Schadensidentifikation von Betonstrukturen. In: Bergmeister, K. and J.D. Wörner (Eds.): Betonkalender 2009. Ernst & Sohn, Berlin, Deutschland, pp. 55–125.
- Strauss, A., Hoffmann, S., Wendner, R. and K. Bergmeister (2009): Structural assessment and reliability analysis for existing engineering structures, applications for real structures. Structure and Infrastructure Engineering 5, 277–286.
- Strauss, A., Wendner, R., Bergmeister, K., Adley, M. and J. Horvatits (2011): Monitoring and influence lines based performance indicators. Beton- und Stahlbetonbau 106, 231–240.
- Strauss, A., Wendner, R., Bergmeister, K. and C. Costa (2013): Numerically and experimentally based reliability assessment of a concrete bridge subjected to chloride–induced deterioration. Journal of Infrastructure Systems 19, 166–175.
- Strauss, A., Wendner, R., Frangopol, D.M. and K. Bergmeister (2012): Influence line–model correction approach for the assessment of engineering structures using novel monitoring techniques. Smart Structures and Systems 9, 1–20.
- Strieder. E., Hilber, R., Stierschneider, E. and K. Bergmeister (2018): FE-Study on the Effect of Gradient Concrete on Early Constraint and Crack Risk. Applied Sciences 8, 246.
- Taylor, G. (1938): Plastic strain in metals. Journal Institution Material 63, 307–324.
- Tuutti, K. (1982): Corrosion of steel in concrete. Swedish Cement and Concrete Research Institute, Stockholm, Sweden.
- Ulm, F.J. and O. Coussy (1995): Modeling of thermo-chemicalmechanical couplings of concrete at early age. Journal of Engineering Mechanics 121, 785–794.
- Val, D.V. and M.G. Stewart (2003): Life-cycle cost analysis of reinforced concrete structures in marine environments. Structural Safety 25, 343–362.
- van Tittelboom K. and N. de Belie (2013): Self-healing in cementitious materials- a review. Materials 6, 2182–2217.
- Vořechovský, M. (2004): Stochastic fracture mechanics and size effect. Dissertation, Brno University of Technology, Brno, Czech Republic.
- Vořechovský, M. and D. Novák (2009): Correlation control in small-sample Monte Carlo type simulations I: A simulated annealing approach. Probabilistic Engineering Mechanics 24, 452–462.
- Vorel, J., Šmilauer, V. and Z. Bittnar (2012): Multiscale simulations of concrete mechanical tests. Journal of Computational and Applied Mathematics 236, 4882–4892.
- Vrouwenvelder, T. (1997): The JCSS probabilistic model code. Structural Safety 19, 245–251.
- Wöhler, A. (1860): Versuche über die Festigkeit der Eisenbahnwagenachsen, English Summary. Zeitschrift Für Bauwesen 4, 160–161.
- Wan, L., Wendner, R., Wang, Y. and G. Cusatis (2016): Analysis of the Behavior of Ultra High Performance Concrete at Early Age. Cement & Concrete Composites, 74, 120–135.
- Wegner, M. (1998): Spezielle Anwendungen der Radiographie und der Computer-Tomographie mit Neutronen. Dissertation, Technische Universität München, Mün-chen, Deutschland.
- Weibull, W. (1951): Wide applicability. Journal of Applied Mechanics 18, 293–297.
- Wendner, R. (2009): Modale Steifigkeitsidentifikation zur Zustandsbewertung von Strukturen aus Konstruktionsbeton. Dissertation, Universität für Bodenkultur Wien, Wien, Österreich.
- Wendner, R., Hubler, M.H. and Z.P. Bažant (2015a): Optimization method, choice of form and uncertainty quantification of Model B4 using laboratory and multidecade bridge databases. Materials and Structures 48, 771–796.
- Wendner, R., Hubler, M.H. and Z.P. Bažant (2015b): Statistical justification of Model B4 for multi-decade concrete creep using laboratory and bridge databases and comparisons to other models. Materials and Structures 48, 815–833.
- Wendner, R., Reiterer, M., Hoffmann, S., Strauss, A. and K. Bergmeister (2007): Adaptive tuned liquid column dampers for structures, Part I - Laboratory tests. Stahlbau 76, 916–923.
- Wendner, R. and A. Strauss (2015): Inclined Approach Slab Solution for Jointless Bridges: Performance Assessment of the Soil–Structure Interaction. Journal of Performance of Constructed Facilities 29, 04014045.
- Wendner, R., Strauss, A., Bergmeister, K. and D.M. Frangopol (2010): Monitoring based evaluation of design criteria for concrete frame bridges. In: IABSE, AIPC, IVBH and I. Symposium-Venice 2010 (Eds.): Large Structures and Infrastructures for Environmentally Constrained and Urbanised Areas. IABSE Symposium Venice 2010. IABSE, Zürich, Switzerland.
- Wendner, R., Tong, T., Strauss, A. and Q. Yu (2015): A case study on correlations of axial shortening and deflection with concrete creep asymptote in segmentallyerected prestressed box girders. Structure and Infrastructure Engineering 11, 1672–1687.
- Wendner, R., Vorel, J., Smith, J., Hoover, C.G., Bažant, Z.P. and G. Cusatis (2014): Characterization of concrete failure behavior: a comprehensive experimental database for the calibration and validation of concrete models. Materials and Structures, 1–24.
- Wenig, C.C., Tam, M.T. and G.C. Lin (1992): Acoustic emission characteristics of mortar under compression. Cement and Concrete Research 22, 641–652.
- Yu, Q., Bažant, Z.P. and R. Wendner (2012): Improved algorithm for efficient and realistic creep analysis of large creep-sensitive concrete structures. ACI Structural Journal 109, 665–676.
- Zhu, B. and D.M. Frangopol (2012): Reliability, redundancy and risk as performance indicators of structural systems during their life-cycle. Engineering Structures 41, 34–49.
- Zilch, K., Weiher, H. and C. Gläser (2009): Monitoring im Betonbau. In: Bergmeister, K., Fingerloos, F. and J.D. Wörner (Eds.): Betonkalender 2009. Ernst & Sohn, Berlin, Deutschland.