Have a personal or library account? Click to login
Value of Optical Genome Mapping (OGM) for Diagnostics of Rare Diseases: A Family Case Report Cover

Value of Optical Genome Mapping (OGM) for Diagnostics of Rare Diseases: A Family Case Report

Open Access
|Mar 2025

References

  1. Dremsek P, Schwarz T, Weil B, Malashka A, Laccone F, Neesen J. Optical Genome Mapping in Routine Human Genetic Diagnostics—Its Advantages and Limitations. <em>Genes</em>. 2021;12(12):1958. doi:<a href="https://doi.org/10.3390/genes12121958" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/genes12121958</a>
  2. Mantere T, Neveling K, Pebrel-Richard C, et al. Optical genome mapping enables constitutional chromosomal aberration detection. <em>Am J Hum Genet</em>. 2021;108(8):1409-1422. doi:<a href="https://doi.org/10.1016/j.ajhg.2021.05.012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ajhg.2021.05.012</a>
  3. Levy B, Baughn LB, Akkari Y, et al. Optical genome mapping in acute myeloid leukemia: a multicenter evaluation. <em>Blood Adv</em>. 2023;7(7):1297-1307. doi:<a href="https://doi.org/10.1182/bloodadvances.2022007583" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1182/bloodadvances.2022007583</a>
  4. Coccaro N, Anelli L, Zagaria A, et al. Feasibility of Optical Genome Mapping in Cytogenetic Diagnostics of Hematological Neoplasms: A New Way to Look at DNA. <em>Diagn Basel Switz</em>. 2023;13(11):1841. doi:<a href="https://doi.org/10.3390/diagnostics13111841" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/diagnostics13111841</a>
  5. Giguère A, Raymond-Bouchard I, Collin V, Claveau JS, Hébert J, LeBlanc R. Optical Genome Mapping Reveals the Complex Genetic Landscape of Myeloma. <em>Cancers</em>. 2023;15(19):4687. doi:<a href="https://doi.org/10.3390/cancers15194687" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/cancers15194687</a>
  6. Puiggros A, Ramos-Campoy S, Kamaso J, et al. Optical Genome Mapping: A Promising New Tool to Assess Genomic Complexity in Chronic Lymphocytic Leukemia (CLL). <em>Cancers</em>. 2022;14(14):3376. doi:<a href="https://doi.org/10.3390/cancers14143376" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/cancers14143376</a>
  7. Tsai HH, Kao HJ, Kuo MW, et al. Whole genomic analysis reveals atypical non-homologous off-target large structural variants induced by CRISPR-Cas9-mediated genome editing. <em>Nat Commun</em>. 2023;14(1):5183. doi:<a href="https://doi.org/10.1038/s41467-023-40901-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/s41467-023-40901-x</a>
  8. Zhang Q, Xu X, Ding L, et al. Clinical application of single‐molecule optical mapping to a multigeneration FSHD1 pedigree. <em>Mol Genet Genomic Med</em>. 2019;7(3):e565. doi:<a href="https://doi.org/10.1002/mgg3.565" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/mgg3.565</a>
  9. Stence AA, Thomason JG, Pruessner JA, et al. Validation of Optical Genome Mapping for the Molecular Diagnosis of Facioscapulohumeral Muscular Dystrophy. <em>J Mol Diagn JMD</em>. 2021;23(11):1506-1514. doi:<a href="https://doi.org/10.1016/j.jmoldx.2021.07.021" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jmoldx.2021.07.021</a>
  10. Efthymiou S, Lemmers RJLF, Vishnu VY, et al. Optical Genome Mapping for the Molecular Diagnosis of Facioscapulohumeral Muscular Dystrophy: Advancement and Challenges. <em>Biomolecules</em>. 2023;13(11):1567. doi:<a href="https://doi.org/10.3390/biom13111567" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/biom13111567</a>
  11. Kovanda A, Lovrečić L, Rudolf G, et al. <em>Evaluation of Optical Genome Mapping in Clinical Genetic Testing of Facioscapulohumeral Muscular Dystrophy</em>. Genetic and Genomic Medicine; 2023. doi:<a href="https://doi.org/10.1101/2023.08.10.23292816" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1101/2023.08.10.23292816</a>
  12. Rogac M, Kovanda A, Lovrečić L, Peterlin B. Optical genome mapping in an atypical Pelizaeus-Merzbacher prenatal challenge. <em>Front Genet</em>. 2023;14:1173426. doi:<a href="https://doi.org/10.3389/fgene.2023.1173426" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fgene.2023.1173426</a>
  13. Ales M, Luca L, Marija V, et al. Phenotype-driven gene target definition in clinical genome-wide sequencing data interpretation. <em>Genet Med</em>. 2016;18(11):1102-1110. doi:<a href="https://doi.org/10.1038/gim.2016.22" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/gim.2016.22</a>
  14. Bergant G, Maver A, Lovrecic L, Čuturilo G, Hodzic A, Peterlin B. Comprehensive use of extended exome analysis improves diagnostic yield in rare disease: a retrospective survey in 1,059 cases. <em>Genet Med</em>. 2018;20(3):303-312. doi:<a href="https://doi.org/10.1038/gim.2017.142" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/gim.2017.142</a>
  15. Riggs ER, Andersen EF, Cherry AM, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). <em>Genet Med Off J Am Coll Med Genet</em>. 2020;22(2):245-257. doi:<a href="https://doi.org/10.1038/s41436-019-0686-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/s41436-019-0686-8</a>
  16. MacDonald JR, Ziman R, Yuen RKC, Feuk L, Scherer SW. The Database of Genomic Variants: a curated collection of structural variation in the human genome. <em>Nucleic Acids Res</em>. 2014;42(Database issue):D986-992. doi:<a href="https://doi.org/10.1093/nar/gkt958" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/nar/gkt958</a>
  17. Moore S, McGowan-Jordan J, Smith AC, et al. Genome Mapping Nomenclature. <em>Cytogenet Genome Res</em>. 2023;163(5-6):236-246. doi:<a href="https://doi.org/10.1159/000535684" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1159/000535684</a>
  18. The GIMP Development Team. GIMP. Published online June 12, 2019. https://www.gimp.org
  19. Phillips-Cremins JE, Corces VG. Chromatin Insulators: Linking Genome Organization to Cellular Function. <em>Mol Cell</em>. 2013;50(4):461-474. doi:<a href="https://doi.org/10.1016/j." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.</a> molcel.2013.04.018
  20. van Steensel B, Belmont AS. Lamina-Associated Domains: Links with Chromosome Architecture, Heterochromatin, and Gene Repression. <em>Cell</em>. 2017;169(5):780-791. doi:<a href="https://doi.org/10.1016/j.cell.2017.04.022" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cell.2017.04.022</a>
  21. Huang H, Zhu Q, Jussila A, et al. CTCF mediates dosage-and sequence-context-dependent transcriptional insulation by forming local chromatin domains. <em>Nat Genet</em>. 2021;53(7):1064-1074. doi:<a href="https://doi.org/10.1038/s41588-021-00863-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/s41588-021-00863-6</a>
  22. Hong CKY, Cohen BA. Genomic environments scale the activities of diverse core promoters. <em>Genome Res</em>. 2022;32(1):85-96. doi:<a href="https://doi.org/10.1101/gr.276025.121" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1101/gr.276025.121</a>
  23. Nassar LR, Barber GP, Benet-Pagès A, et al. The UCSC Genome Browser database: 2023 update. <em>Nucleic Acids Res</em>. 2023;51(D1):D1188-D1195. doi:<a href="https://doi.org/10.1093/nar/gkac1072" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/nar/gkac1072</a>
  24. Fjorder AS, Rasmussen MB, Mehrjouy MM, et al. Haploinsufficiency of ARHGAP42 is associated with hypertension. <em>Eur J Hum Genet EJHG</em>. 2019;27(8):1296-1303. doi:<a href="https://doi.org/10.1038/s41431-019-0382-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/s41431-019-0382-9</a>
  25. Nagao K, Ito H, Yoshida H. Chromosomal translocation t(X;18) in human synovial sarcomas analyzed by fluorescence in situ hybridization using paraffin-embedded tissue. <em>Am J Pathol</em>. 1996;148(2):601-609.
  26. Udayakumar AM, Sundareshan TS, Mukherjee G, Biswas S, Rajan KR, Prabhakaran PS. Submandibular synovial sarcoma with t(X;18) and synovial sarcoma of the toe with additional cytogenetic abnormalities. <em>Cancer Genet Cytogenet</em>. 2002;134(2):151-155. doi:<a href="https://doi.org/10.1016/S0165-4608(01)00606-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0165-4608(01)00606-9</a>
  27. The ACMG Laboratory Quality Assurance Committee, Richards S, Aziz N, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. <em>Genet Med</em>. 2015;17(5):405-423. doi:<a href="https://doi.org/10.1038/gim.2015.30" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/gim.2015.30</a>
Language: English
Page range: 87 - 93
Published on: Mar 6, 2025
Published by: Macedonian Academy of Sciences and Arts
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2025 A Kovanda, O Miljanović, L Lovrečić, A Maver, A Hodžić, B Peterlin, published by Macedonian Academy of Sciences and Arts
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.