Have a personal or library account? Click to login
Forecasting Electicity in Photovoltaic Power Plants Cover

Forecasting Electicity in Photovoltaic Power Plants

Open Access
|Oct 2025

References

  1. P. Ramsami, V. Oree, A hybrid method for forecasting the energy output of photovoltaic systems, Energy Conversion and Management 95. (2015). Accessed: March 16, 2025. [Online]. Available:https://www.researchgate.net/publication/276452312_A_hybrid_method_for_forecasting_the_energy_output_of_photovoltaic_systems
  2. E. Izgi et al, Short–mid-term solar power prediction by using artificial neural networks, Solar Energy 86. (2011). Accessed: March 16, 2025. [Online]. Available:https://doi.org/10.1016/j.solener.2011.11.013.
  3. M. Cobaner et al, Prediction of Hydropower Energy Using ANN for the Feasibility of Hydropower Plant Installation to an Existing Irrigation Dam, Water Resour Manage 22. (2008). Accessed: March 16, 2025 [Online]. Available: https://doi.org/10.1007/s11269-007-9190-z
  4. A. Saberian at al, Modelling and Prediction of Photovoltaic Power Output Using Artificial Neural Networks. International Journal of Photoenergy. (2014). Accessed: March 16, 2025. [Online]. Available: https://scihub.se/https://onlinelibrary.wiley.com/doi/full/10.1155/2014/469701
  5. T. Khatib at al, Solar energy prediction for Malaysia using artificial neural networks, International Journal of Photoenergy. (2012). Accessed: March 16, 2025. [Online].Available: https://onlinelibrary.wiley.com/doi/full/10.1155/2012/419504
  6. M. Abuella, B.Chowdhury, “Solar power forecasting using artificial neural networks”. North American Power Symposium (NAPS). (2015). Accessed: March 16, 2025. [Online]. Available: https://www.researchgate.net/publication/282650839_Solar_Power_Forecasting_Using_Artificial_Neural_Networks
  7. S. Karsoliya, “Approximating Number of Hidden layer neurons in Multiple Hidden Layer BPNN Architecture”. International Journal of Engineering Trends and Technology 3. (2012). Accessed: March 16, 2025. [Online]. Available: https://ijettjournal.org/archive/ijett-v3i6p206
  8. S.A. Kalogirou, M. Bojic, “Artificial neural networks for the prediction of the energy consumption of a passive solar building”. Energy 25(5). (2000). Accessed: March 16, 2025. [Online]. Available: https://www.researchgate.net/publication/222899234_Artificial_Neural_Networks_for_the_Prediction_of_the_Energy_Consumption_of_a_Passive_Solar_Building
  9. N. Anang, S.N.A. Syd Nur Azman, W.M.W. Muda, “Performance analysis of a grid-connected rooftop solar PV system in Kuala Terengganu, Malaysia”. Energy and Buildings (2021). Accessed: Jul 17, 2025. Available:https://www.sciencedirect.com/science/article/abs/pii/S0378778821004667
DOI: https://doi.org/10.2478/bhee-2025-0009 | Journal eISSN: 2566-3151 | Journal ISSN: 2566-3143
Language: English
Submitted on: Nov 19, 2024
Accepted on: Mar 11, 2025
Published on: Oct 8, 2025
Published by: Bosnia and Herzegovina National Committee CIGRÉ
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Aleksandra Ijačić, Damir Špago, Obrad Spaić, Dragi Tiro, published by Bosnia and Herzegovina National Committee CIGRÉ
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT