References
- P. Ramsami, V. Oree, A hybrid method for forecasting the energy output of photovoltaic systems, Energy Conversion and Management 95. (2015). Accessed: March 16, 2025. [Online]. Available:https://www.researchgate.net/publication/276452312_A_hybrid_method_for_forecasting_the_energy_output_of_photovoltaic_systems
- E. Izgi et al, Short–mid-term solar power prediction by using artificial neural networks, Solar Energy 86. (2011). Accessed: March 16, 2025. [Online]. Available:https://doi.org/10.1016/j.solener.2011.11.013.
- M. Cobaner et al, Prediction of Hydropower Energy Using ANN for the Feasibility of Hydropower Plant Installation to an Existing Irrigation Dam, Water Resour Manage 22. (2008). Accessed: March 16, 2025 [Online]. Available: https://doi.org/10.1007/s11269-007-9190-z
- A. Saberian at al, Modelling and Prediction of Photovoltaic Power Output Using Artificial Neural Networks. International Journal of Photoenergy. (2014). Accessed: March 16, 2025. [Online]. Available: https://scihub.se/https://onlinelibrary.wiley.com/doi/full/10.1155/2014/469701
- T. Khatib at al, Solar energy prediction for Malaysia using artificial neural networks, International Journal of Photoenergy. (2012). Accessed: March 16, 2025. [Online].Available: https://onlinelibrary.wiley.com/doi/full/10.1155/2012/419504
- M. Abuella, B.Chowdhury, “Solar power forecasting using artificial neural networks”. North American Power Symposium (NAPS). (2015). Accessed: March 16, 2025. [Online]. Available: https://www.researchgate.net/publication/282650839_Solar_Power_Forecasting_Using_Artificial_Neural_Networks
- S. Karsoliya, “Approximating Number of Hidden layer neurons in Multiple Hidden Layer BPNN Architecture”. International Journal of Engineering Trends and Technology 3. (2012). Accessed: March 16, 2025. [Online]. Available: https://ijettjournal.org/archive/ijett-v3i6p206
- S.A. Kalogirou, M. Bojic, “Artificial neural networks for the prediction of the energy consumption of a passive solar building”. Energy 25(5). (2000). Accessed: March 16, 2025. [Online]. Available: https://www.researchgate.net/publication/222899234_Artificial_Neural_Networks_for_the_Prediction_of_the_Energy_Consumption_of_a_Passive_Solar_Building
- N. Anang, S.N.A. Syd Nur Azman, W.M.W. Muda, “Performance analysis of a grid-connected rooftop solar PV system in Kuala Terengganu, Malaysia”. Energy and Buildings (2021). Accessed: Jul 17, 2025. Available:https://www.sciencedirect.com/science/article/abs/pii/S0378778821004667