References
- Dawkins, H.J.S. et al. (2017) ‘Progress in rare diseases research 2010-2016: An IRDIRC perspective’, Clinical and Translational Science, 11(1), pp. 11–20. doi:10.1111/cts.12501.
- Becker, S. and Boch, J. (2021) ‘Tale and TALENs genome editing technologies’, Gene and Genome Editing, 2, p. 100007. doi:10.1016/j.ggedit.2021.100007.
-
3.
Ochiai, H. and Yamamoto, T. (2023) ‘Construction and evaluation of zinc finger nucleases’, Methods in Molecular Biology, pp. 1–25. doi:10.1007/978
1-0716-30167_1.
Ochiai H. Yamamoto T. ( 2023 ) ‘ Construction and evaluation of zinc finger nucleases ’, Methods in Molecular Biology , pp. 1 – 25 . 10.1007/978-1-0716-30167_1 .
- Hendriks, D., Clevers, H. and Artegiani, B. (2020) ‘CRISPR-cas tools and their application in genetic engineering of human stem cells and organoids’, Cell Stem Cell,27(5), pp. 705–731. doi:10.1016/j. stem.2020.10.014.
- Pandita, D. and Pandita, A. (2023) CRISPR. Palm Bay, FL, Boca Raton, FL: AppleAcademic Press Inc. ; CRC Press.
- Petraitytė, G., Preikšaitienė, E. and Mikštienė, V. (2021) ‘Genome editing in medicine: Tools and challenges’, Acta medica Lituanica, 28(2), p. 8.doi:10.15388/amed.2021.28.2.8.
- Pandey, P. (2024) ‘Balancing Innovation and Responsibility: The ethical and societal impacts of ai in the internet age’, International Journal of Science and Research(IJSR), 13(12), pp. 972–973. doi:10.21275/sr241121232016.
- Harrison, P.T. and Hart, S. (2018) ‘A beginner’s Guide to gene editing’, Experimental Physiology, 103(4), pp. 439–448. doi:10.1113/ep086047.
- Komiyama, M. (2005) ‘Faculty opinions recommendation of highly efficient endogenous human gene correction using designed zinc-finger nucleases.’, Faculty Opinions–Post-Publication Peer Review of the Biomedical Literature[Preprint]. doi:10.3410/f.1025053.324988.
- Geurts, A.M. et al. (2009) ‘Knockout rats via embryo microinjection of zinc-fingernucleases’, Science, 325(5939), pp. 433–433. doi:10.1126/science.1172447.
- Birling, M.-C., Herault, Y. and Pavlovic, G. (2017) ‘Modeling human disease in rodents by CRISPR/Cas9 genome editing’, Mammalian Genome, 28(7–8), pp. 291301. doi:10.1007/s00335-017-9703-x.
- Morales, E.E. and Wingert, R.A. (2017) ‘Zebrafish as a model of kidney disease’, Results and Problems in Cell Differentiation, pp. 55–75. doi:10.1007/978-3319-51436-9_3.
- Benhabiles, H., Jia, J. and Lejeune, F. (2016) ‘Strategies to correct nonsense mutations’, Nonsense Mutation Correction in Human Diseases, pp. 107 165. doi:10.1016/b978-0-12-804468-1.00003-8.
- Qasim, W. et al. (2017) ‘Molecular remission of infant B-all after infusion of Universal TALENs gene-edited car T cells’, Science Translational Medicine, 9(374).doi:10.1126/scitranslmed.aaj2013.
- (2016) Decision letter: A host basal transcription factor is a key component forinfection of rice by tale-carrying bacteria[Preprint]. doi:10.7554/elife.19605.031.
- Chai, J., Han, Z. and Gao, H. (2012) Crystal structure of a tale protein reveals an extended N-terminal DNA binding region [Preprint]. doi:10.2210/pdb4hpz/pdb.
- Boch, J. et al. (2009) ‘Breaking the code of DNA binding specificity of tal-type III effectors’, Science, 326(5959), pp. 1509–1512. doi:10.1126/science.1178811.
- Yang, J. et al. (2014) ‘Complete decoding of tal effectors for DNA recognition’, Cell Research, 24(5), pp. 628–631. doi:10.1038/cr.2014.19.
- Miller, J.C. et al. (2015) ‘Improved specificity of tale-based genome editing using an expanded RVD repertoire’, Nature Methods, 12(5), pp. 465–471.doi:10.1038/nmeth.3330.
- Cuculis, L. et al. (2016) ‘Tale proteins search DNA using a rotationally decoupled mechanism’, Nature Chemical Biology, 12(10), pp. 831–837.doi:10.1038/nchembio.2152.
- Qasim, W. et al. (2017a) ‘Molecular remission of infant B-all after infusion of Universal TALENs gene-edited car T cells’, Science Translational Medicine, 9(374).doi:10.1126/scitranslmed.aaj2013.
- Nemudryi, A.A. et al. (2014) ‘TALENs and CRISPR/Cas genome editing systems: Tools of discovery’, Acta Naturae, 6(3), pp. 19–40. doi:10.32607/20758251-2014-6-3-19-40.
- Jiang, F. and Doudna, J.A. (2017) ‘CRISPR–cas9 structures and mechanisms’, Annual Review of Biophysics, 46(1), pp. 505–529. doi:10.1146/annurev-biophys-062215010822.
- Mengstie, M.A. and Wondimu, B.Z. (2021) ‘Mechanism and applications of CRISPR/cas-9-mediated genome editing’, Biologics: Targets and Therapy, Volume15, pp. 353–361. doi:10.2147/btt.s326422.
- Jinek, M. et al. (2012) ‘A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity’, Science, 337(6096), pp. 816–821.doi:10.1126/science.1225829.
- CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia’ (2021) NewEngland Journal of Medicine, 384(23). doi:10.1056/nejmc2103481.
- Da Silva Sanchez, A. et al. (2020) ‘Treating cystic fibrosis with mrna and CRISPR’, Human Gene Therapy, 31(17–18), pp. 940–955. doi:10.1089/hum.2020.137.
- Happi Mbakam, C. et al. (2022) ‘CRISPR-Cas9 gene therapy for Duchenne muscular dystrophy’, Neurotherapeutics, 19(3), pp. 931–941. doi:10.1007/s13311-022-01197-9.
- Alkanli, S.S. et al. (2022) ‘CRISPR/Cas9 mediated therapeutic approach in Huntington’s disease’, Molecular Neurobiology, 60(3), pp. 1486–1498. doi:10.1007/s12035-022-03150-5.
- Hoy, S.M. (2024) ‘Exagamglogene Autotemcel: First approval’, Molecular Diagnosis & amp; Therapy, 28(2), pp. 133–139. doi:10.1007/s40291-024-00696-z.
- Zhang, B. (2020) ‘CRISPR/Cas Gene therapy’, Journal of Cellular Physiology,236(4), pp. 2459–2481. doi:10.1002/jcp.30064.
- News: CRISPR medicine in 2024#x2013; A recap (no date) CRISPR Medicine. Available at: https://crisprmedi-cinenews.com/news/crispr-medicine-in-2024-a-recap/?utm_source=chatgpt.com (Accessed: 29 May 2025).
- Brelot, A. and Chakrabarti, L.A. (2018) ‘CCR5 revisited: How mechanisms of HIV entry govern AIDS pathogenesis’, Journal of Molecular Biology, 430(17), pp. 25572589. doi:10.1016/j.jmb.2018.06.027.
- Mills, P. (2019) ‘Preimplantation genome editing: ccr5 in China’, Emerging Topics inLife Sciences, 3(6), pp. 695–700. doi:10.1042/etls20190114.
- Miao, K. et al. (2019) ‘Optimizing CRISPR/cas9 technology for precise correction of the FGFR3-G374R mutation in achondroplasia in mice’, Journal of BiologicalChemistry, 294(4), pp. 1142–1151. doi:10.1074/jbc.ra118.006496.
- Ekman, F.K. et al. (2019) ‘CRISPR-Cas9-mediated genome editing increases lifespan and improves motor deficits in a huntington’s disease mouse model’, Molecular Therapy– Nucleic Acids, 17, pp. 829–839. doi:10.1016/j.omtn.2019.07.009.
- Lukin, J., Smith, C.M. and De Rubeis, S. (2024) ‘Emerging X-linked genes associated with neurodevelopmental disorders in females’, Current Opinion in Neurobiology, 88, p. 102902. doi:10.1016/j. conb.2024.102902.
- Tang, X.-D. et al. (2019) ‘Methods for enhancing clustered regularly interspaced short palindromic repeats/cas9-mediated homology-directed repairefficiency’, Frontiers in Genetics, 10. doi:10.3389/fgene.2019.00551.
- Li, H.L. et al. (2015) ‘Precise correction of the dystrophin gene in Duchenne muscular dystrophy patient induced pluripotent stem cells by TALENs and CRISPR Cas9’, Stem Cell Reports, 4(1), pp. 143–154. doi:10.1016/j.stemcr.2014.10.013.
- Fesnak, A.D., June, C.H. and Levine, B.L. (2016) ‘Engineered T cells: The promise and challenges of cancer immunotherapy’, Nature Reviews Cancer, 16(9), pp. 566581. doi:10.1038/nrc.2016.97.
- Young, R.M. et al. (2022) ‘Next-generation car T-cell therapies’, Cancer Discovery,12(7), pp. 1625–1633. doi:10.1158/2159-8290.cd-21-1683.
- Poirot, L. et al. (2015) ‘Multiplex genome-edited T-cell manufacturing platform for “off-the-shelf” adoptive T-cell immunotherapies’, Cancer Research, 75(18), pp.3853–3864. doi:10.1158/0008-5472.can-14-3321.
- Liu, Xiaojuan et al. (2016) ‘CRISPR-Cas9-mediated multiplex gene editing in car-Tcells’, Cell Research, 27(1), pp. 154–157. doi:10.1038/cr.2016.142.
- Rothschild, J. (2020) ‘Ethical considerations of gene editing and genetic selection’, Journal of General and Family Medicine, 21(3), pp. 37–47. doi:10.1002/jgf2.321.
- Ormond, K.E. et al. (2017) ‘Human germline genome editing’, The American Journal of Human Genetics, 101(2), pp. 167–176. doi:10.1016/j.ajhg.2017.06.012.