Have a personal or library account? Click to login
Gene editing and its impact on the future of clinical medicine Cover

Gene editing and its impact on the future of clinical medicine

Open Access
|Jun 2025

References

  1. Dawkins, H.J.S. et al. (2017) ‘Progress in rare diseases research 2010-2016: An IRDIRC perspective’, Clinical and Translational Science, 11(1), pp. 11–20. doi:10.1111/cts.12501.
  2. Becker, S. and Boch, J. (2021) ‘Tale and TALENs genome editing technologies’, Gene and Genome Editing, 2, p. 100007. doi:10.1016/j.ggedit.2021.100007.
  3. 3. Ochiai, H. and Yamamoto, T. (2023) ‘Construction and evaluation of zinc finger nucleases’, Methods in Molecular Biology, pp. 1–25. doi:10.1007/978 1-0716-30167_1.
    Ochiai H. Yamamoto T. ( 2023 ) ‘ Construction and evaluation of zinc finger nucleases ’, Methods in Molecular Biology , pp. 1 25 . 10.1007/978-1-0716-30167_1 .
  4. Hendriks, D., Clevers, H. and Artegiani, B. (2020) ‘CRISPR-cas tools and their application in genetic engineering of human stem cells and organoids’, Cell Stem Cell,27(5), pp. 705–731. doi:10.1016/j. stem.2020.10.014.
  5. Pandita, D. and Pandita, A. (2023) CRISPR. Palm Bay, FL, Boca Raton, FL: AppleAcademic Press Inc. ; CRC Press.
  6. Petraitytė, G., Preikšaitienė, E. and Mikštienė, V. (2021) ‘Genome editing in medicine: Tools and challenges’, Acta medica Lituanica, 28(2), p. 8.doi:10.15388/amed.2021.28.2.8.
  7. Pandey, P. (2024) ‘Balancing Innovation and Responsibility: The ethical and societal impacts of ai in the internet age’, International Journal of Science and Research(IJSR), 13(12), pp. 972–973. doi:10.21275/sr241121232016.
  8. Harrison, P.T. and Hart, S. (2018) ‘A beginner’s Guide to gene editing’, Experimental Physiology, 103(4), pp. 439–448. doi:10.1113/ep086047.
  9. Komiyama, M. (2005) ‘Faculty opinions recommendation of highly efficient endogenous human gene correction using designed zinc-finger nucleases.’, Faculty Opinions–Post-Publication Peer Review of the Biomedical Literature[Preprint]. doi:10.3410/f.1025053.324988.
  10. Geurts, A.M. et al. (2009) ‘Knockout rats via embryo microinjection of zinc-fingernucleases’, Science, 325(5939), pp. 433–433. doi:10.1126/science.1172447.
  11. Birling, M.-C., Herault, Y. and Pavlovic, G. (2017) ‘Modeling human disease in rodents by CRISPR/Cas9 genome editing’, Mammalian Genome, 28(7–8), pp. 291301. doi:10.1007/s00335-017-9703-x.
  12. Morales, E.E. and Wingert, R.A. (2017) ‘Zebrafish as a model of kidney disease’, Results and Problems in Cell Differentiation, pp. 55–75. doi:10.1007/978-3319-51436-9_3.
  13. Benhabiles, H., Jia, J. and Lejeune, F. (2016) ‘Strategies to correct nonsense mutations’, Nonsense Mutation Correction in Human Diseases, pp. 107 165. doi:10.1016/b978-0-12-804468-1.00003-8.
  14. Qasim, W. et al. (2017) ‘Molecular remission of infant B-all after infusion of Universal TALENs gene-edited car T cells’, Science Translational Medicine, 9(374).doi:10.1126/scitranslmed.aaj2013.
  15. (2016) Decision letter: A host basal transcription factor is a key component forinfection of rice by tale-carrying bacteria[Preprint]. doi:10.7554/elife.19605.031.
  16. Chai, J., Han, Z. and Gao, H. (2012) Crystal structure of a tale protein reveals an extended N-terminal DNA binding region [Preprint]. doi:10.2210/pdb4hpz/pdb.
  17. Boch, J. et al. (2009) ‘Breaking the code of DNA binding specificity of tal-type III effectors’, Science, 326(5959), pp. 1509–1512. doi:10.1126/science.1178811.
  18. Yang, J. et al. (2014) ‘Complete decoding of tal effectors for DNA recognition’, Cell Research, 24(5), pp. 628–631. doi:10.1038/cr.2014.19.
  19. Miller, J.C. et al. (2015) ‘Improved specificity of tale-based genome editing using an expanded RVD repertoire’, Nature Methods, 12(5), pp. 465–471.doi:10.1038/nmeth.3330.
  20. Cuculis, L. et al. (2016) ‘Tale proteins search DNA using a rotationally decoupled mechanism’, Nature Chemical Biology, 12(10), pp. 831–837.doi:10.1038/nchembio.2152.
  21. Qasim, W. et al. (2017a) ‘Molecular remission of infant B-all after infusion of Universal TALENs gene-edited car T cells’, Science Translational Medicine, 9(374).doi:10.1126/scitranslmed.aaj2013.
  22. Nemudryi, A.A. et al. (2014) ‘TALENs and CRISPR/Cas genome editing systems: Tools of discovery’, Acta Naturae, 6(3), pp. 19–40. doi:10.32607/20758251-2014-6-3-19-40.
  23. Jiang, F. and Doudna, J.A. (2017) ‘CRISPR–cas9 structures and mechanisms’, Annual Review of Biophysics, 46(1), pp. 505–529. doi:10.1146/annurev-biophys-062215010822.
  24. Mengstie, M.A. and Wondimu, B.Z. (2021) ‘Mechanism and applications of CRISPR/cas-9-mediated genome editing’, Biologics: Targets and Therapy, Volume15, pp. 353–361. doi:10.2147/btt.s326422.
  25. Jinek, M. et al. (2012) ‘A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity’, Science, 337(6096), pp. 816–821.doi:10.1126/science.1225829.
  26. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia’ (2021) NewEngland Journal of Medicine, 384(23). doi:10.1056/nejmc2103481.
  27. Da Silva Sanchez, A. et al. (2020) ‘Treating cystic fibrosis with mrna and CRISPR’, Human Gene Therapy, 31(17–18), pp. 940–955. doi:10.1089/hum.2020.137.
  28. Happi Mbakam, C. et al. (2022) ‘CRISPR-Cas9 gene therapy for Duchenne muscular dystrophy’, Neurotherapeutics, 19(3), pp. 931–941. doi:10.1007/s13311-022-01197-9.
  29. Alkanli, S.S. et al. (2022) ‘CRISPR/Cas9 mediated therapeutic approach in Huntington’s disease’, Molecular Neurobiology, 60(3), pp. 1486–1498. doi:10.1007/s12035-022-03150-5.
  30. Hoy, S.M. (2024) ‘Exagamglogene Autotemcel: First approval’, Molecular Diagnosis & amp; Therapy, 28(2), pp. 133–139. doi:10.1007/s40291-024-00696-z.
  31. Zhang, B. (2020) ‘CRISPR/Cas Gene therapy’, Journal of Cellular Physiology,236(4), pp. 2459–2481. doi:10.1002/jcp.30064.
  32. News: CRISPR medicine in 2024#x2013; A recap (no date) CRISPR Medicine. Available at: https://crisprmedi-cinenews.com/news/crispr-medicine-in-2024-a-recap/?utm_source=chatgpt.com (Accessed: 29 May 2025).
  33. Brelot, A. and Chakrabarti, L.A. (2018) ‘CCR5 revisited: How mechanisms of HIV entry govern AIDS pathogenesis’, Journal of Molecular Biology, 430(17), pp. 25572589. doi:10.1016/j.jmb.2018.06.027.
  34. Mills, P. (2019) ‘Preimplantation genome editing: ccr5 in China’, Emerging Topics inLife Sciences, 3(6), pp. 695–700. doi:10.1042/etls20190114.
  35. Miao, K. et al. (2019) ‘Optimizing CRISPR/cas9 technology for precise correction of the FGFR3-G374R mutation in achondroplasia in mice’, Journal of BiologicalChemistry, 294(4), pp. 1142–1151. doi:10.1074/jbc.ra118.006496.
  36. Ekman, F.K. et al. (2019) ‘CRISPR-Cas9-mediated genome editing increases lifespan and improves motor deficits in a huntington’s disease mouse model’, Molecular Therapy– Nucleic Acids, 17, pp. 829–839. doi:10.1016/j.omtn.2019.07.009.
  37. Lukin, J., Smith, C.M. and De Rubeis, S. (2024) ‘Emerging X-linked genes associated with neurodevelopmental disorders in females’, Current Opinion in Neurobiology, 88, p. 102902. doi:10.1016/j. conb.2024.102902.
  38. Tang, X.-D. et al. (2019) ‘Methods for enhancing clustered regularly interspaced short palindromic repeats/cas9-mediated homology-directed repairefficiency’, Frontiers in Genetics, 10. doi:10.3389/fgene.2019.00551.
  39. Li, H.L. et al. (2015) ‘Precise correction of the dystrophin gene in Duchenne muscular dystrophy patient induced pluripotent stem cells by TALENs and CRISPR Cas9’, Stem Cell Reports, 4(1), pp. 143–154. doi:10.1016/j.stemcr.2014.10.013.
  40. Fesnak, A.D., June, C.H. and Levine, B.L. (2016) ‘Engineered T cells: The promise and challenges of cancer immunotherapy’, Nature Reviews Cancer, 16(9), pp. 566581. doi:10.1038/nrc.2016.97.
  41. Young, R.M. et al. (2022) ‘Next-generation car T-cell therapies’, Cancer Discovery,12(7), pp. 1625–1633. doi:10.1158/2159-8290.cd-21-1683.
  42. Poirot, L. et al. (2015) ‘Multiplex genome-edited T-cell manufacturing platform for “off-the-shelf” adoptive T-cell immunotherapies’, Cancer Research, 75(18), pp.3853–3864. doi:10.1158/0008-5472.can-14-3321.
  43. Liu, Xiaojuan et al. (2016) ‘CRISPR-Cas9-mediated multiplex gene editing in car-Tcells’, Cell Research, 27(1), pp. 154–157. doi:10.1038/cr.2016.142.
  44. Rothschild, J. (2020) ‘Ethical considerations of gene editing and genetic selection’, Journal of General and Family Medicine, 21(3), pp. 37–47. doi:10.1002/jgf2.321.
  45. Ormond, K.E. et al. (2017) ‘Human germline genome editing’, The American Journal of Human Genetics, 101(2), pp. 167–176. doi:10.1016/j.ajhg.2017.06.012.
DOI: https://doi.org/10.2478/bgbl-2025-0007 | Journal eISSN: 2956-6851 | Journal ISSN: 0373-174X
Language: English
Page range: 69 - 82
Submitted on: May 30, 2025
Accepted on: Jun 4, 2025
Published on: Jun 17, 2025
Published by: The Medical Library named after S. Konopka in Warsaw
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Wiera Magdalena Tołczyk, Gabriela Maria Piech, Igor Lis, published by The Medical Library named after S. Konopka in Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 License.