Have a personal or library account? Click to login
Prebiotic properties of resistant starch Cover
Open Access
|Jun 2024

References

  1. Sobh M., Montroy J., Daham Z., et al., Tolerability and SCFA production after resistant starch supplementation in humans: a systematic review of randomized controlled studies, Am. J. Clin. Nutr.2022, 115:608–618. https://doi.org/10.1093/ajcn/nqab402.
  2. Haenen D., Zhang J., Souza da Silva C., et al., A Diet High in Resistant Starch Modulates Microbiota Composition, SCFA Concentrations, and Gene Expression in Pig Intestine, J. Nutr. 2013, 143:274–283. https://doi.org/10.3945/jn.112.169672.
  3. Gibson G. R., Scott K. P., Rastall R. A., et al., Dietary prebiotics: current status and new definition, Food Science & Technology Bulletin: Functional Foods 2021, 7:1–19. https://doi.org/10.1616/1476-2137.15880.
  4. James S. L., Christophersen C. T., Bird A. R., et al., Abnormal fibre usage in UC in remission, Gut 2025, 64:562–570. https://doi.org/10.1136/gutjnl-2014-307198.
  5. Dobranowski P. A., Stintzi A., Resistant starch, microbiome, and precision modulation, Gut Microbes 2021, 13:. https://doi.org/10.1080/19490976.2021.1926842.
  6. Martínez I., Kim J., Duffy P. R., et al., Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS One 2010, 5:. https://doi.org/10.1371/journal.pone.0015046.
  7. Asp N.-G., Björck I., Resistant starch, Trends Food Sci. Technol. 1992, 3:111–114. https://doi.org/10.1016/0924-2244(92)90153-N.
  8. Klostermann C. E., Endika M. F., Kouzounis D., et al., Presence of digestible starch impacts in vitro fermentation of resistant starch. Food Funct. 2024, 15:223–235. https://doi.org/10.1039/D3FO01763J.
  9. Kang M.-S., Jang K.-A., Kim H.-R., Song S., Association of dietary resistant starch intake with obesity and metabolic syndrome in Korean adults, Nutrients 2024,16:158. https://doi.org/10.3390/nu16010158.
  10. Fuentes-Zaragoza E., Sánchez-Zapata E., Sendra E., et al., Resistant starch as prebiotic: A review, Starch/Staerke 2011, 63:406–415.
  11. Lockyer S., Nugent A. P., Health effects of resistant starch, Nutr. Bull. 2017, 42:. https://doi.org/10.1111/nbu.12244.
  12. Ashwar B.A., Gani A., Shah A., et al., Preparation, health benefits and applications of resistant starch – A review, Starch/Staerke 2016, 68:287–301.
  13. TEKİN T., FİSUNOĞLU M., Effect of resistant starch on inflammatory bowel diseases and microbiota. Journal of Traditional Medical Complementary Therapies 2020, 3:99–106. https://doi.org/10.5336/jtracom.2019-72218.
  14. Bojarczuk A., Skąpska S., Mousavi Khaneghah A., Marszałek K., Health benefits of resistant starch: A review of the literature, J. Funct. Foods 2022, 93:105094. https://doi.org/10.1016/j.jff.2022.105094.
  15. Lutsiv T., Weir T. L., McGinley J. N., et al., Compositional changes of the high-fat diet-induced gut microbiota upon consumption of common pulses, Nutrients 2021,13:3992. https://doi.org/10.3390/nu13113992.
  16. Guan N., He X., Wang S., et al., Cell wall integrity of pulse modulates the in vitro fecal fermentation rate and microbiota composition, J. Agric. Food Chem. 2020,68:1091–1100. https://doi.org/10.1021/acs.jafc.9b06094.
  17. Bäckhed F., Ley R. E., Sonnenburg J. L., et al., Host-bacterial mutualism in the human intestine, Science 2005, 307:1915–1920. https://doi.org/10.1126/science.1104816.
  18. Bischoff S. C., “Gut health”: a new objective in medicine?, BMC Med. 2011, 9:24. https://doi.org/10.1186/1741-7015-9-24.
  19. Monk J. M., Lepp D., Wu W., et al., Navy and black bean supplementation primes the colonic mucosal microenvironment to improve gut health, J. Nutr. Biochem. 2017, 49:89–100. https://doi.org/10.1016/j.jnutbio.2017.08.002.
  20. Martinez J. E., Kahana D. D, Ghuman S , et al., Unhealthy lifestyle and gut dysbiosis: A better understanding of the effects of poor diet and nicotine on the intestinal microbiome, Front Endocrinol. (Lausanne) 2021, 12:. https://doi.org/10.3389/fendo.2021.667066.
  21. Simon E., Călinoiu L. F., Mitrea L., Vodnar D. C., Probiotics, prebiotics, and synbiotics: Implications and beneficial effects against irritable bowel syndrome, Nutrients 2021, 13:2112. https://doi.org/10.3390/nu13062112.
  22. Becerra-Tomás N., Papandreou C., Salas-Salvadó J., Legume consumption and cardiometabolic health, Advances in Nutrition 2019, 10:S437–S450. https://doi.org/10.1093/advances/nmz003.
  23. 23. Danneskiold-Samsøe N. B., Dias de Freitas Queiroz Barros H., Santos R., et al., Interplay between food and gut microbiota in health and disease, Food Research International 2019, 115:23–31. https://doi.org/10.1016/j.foodres.2018.07.043.
  24. Guarino M., Altomare A., Emerenziani S., et al., Mechanisms of action of prebiotics and their effects on gastro-intestinal disorders in adults, Nutrients 2020, 12:1037. https://doi.org/10.3390/nu12041037.
  25. Cummings J. H., Macfarlane G. T., Gastrointestinal effects of prebiotics, British Journal of Nutrition 2002, 87:145–151. https://doi.org/10.1079/BJNBJN/2002530.
  26. den Besten G., van Eunen K., Groen A. K., et al., The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism, J. Lipid. Res. 2013, 54:. https://doi.org/10.1194/jlr.R036012.
  27. Tsai Y.-L., Lin T.-L., Chang C.-J., et al., Probiotics, prebiotics and amelioration of diseases, J. Biomed. Sci. 2019,26:3. https://doi.org/10.1186/s12929-018-0493-6.
  28. Sun Y., O’Riordan M. X. D., Regulation of bacterial pathogenesis by intestinal short-chain fatty acids, Adv. Appl. Microbiol. 2013, pp 93–118.
  29. Cantarel B. L., Lombard V., Henrissat B., Complex carbohydrate utilization by the healthy human microbiome, PLoS One 2012, 7:e28742. https://doi.org/10.1371/journal.pone.0028742.
  30. Boye J., Zare F., Pletch A., Pulse proteins: Processing, characterization, functional properties and applications in food and feed, Food Research International 2010, 43:414–431. https://doi.org/10.1016/j.foodres.2009.09.003.
  31. Flint H. J., Scott K. P., Duncan S. H., et al., (2012) Microbial degradation of complex carbohydrates in the gut, Gut Microbes 2012, 3:289–306.
  32. Belenguer A., Duncan S. H., Calder A. G., et al., Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut, Appl. Environ. Microbiol. 2026, 72:3593–3599. https://doi.org/10.1128/AEM.72.5.3593-3599.2006.
  33. Ze X., Ben David Y., Laverde-Gomez J. A., et al., Unique organization of extracellular amylases into amylosomes in the resistant starch-utilizing human colonic Firmicutes Bacterium Ruminococcus bromii, mBio 2015, 6:. https://doi.org/10.1128/mBio.01058-15.
  34. Hong Y.-S., Jung D.-H., Chung W.-H., et al., Human gut commensal bacterium Ruminococcus species FMB-CY1 completely degrades the granules of resistant starch, Food Sci. Biotechnol. 2022, 31:231–241. https://doi.org/10.1007/s10068-021-01027-2.
  35. Jung D.-H., Kim G.-Y., Kim I.-Y., et al., Bifidobacterium adolescentis P2P3, a human gut bacterium having strong non-gelatinized resistant starch-degrading activity, J. Microbiol. Biotechnol. 2019, 29:1904–1915. https://doi.org/10.4014/jmb.1909.09010.
  36. Lesmes U., Beards E. J., Gibson G. R., et al., Effects of resistant starch type III polymorphs on human colon microbiota and short chain fatty acids in human gut models, J. Agric. Food Chem. 2008, 56:5415–5421. https://doi.org/10.1021/jf800284d.
  37. Zhang Y., Wang Y., Zheng B., et al., The in vitro effects of retrograded starch (resistant starch type 3) from lotus seed starch on the proliferation of Bifidobacterium adolescentis, Food Funct 2013, 4:1609–1616. https://doi.org/10.1039/c3fo60206k.
  38. Ze X., Duncan S. H., Louis P., Flint H. J. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon, ISME J 2012, 6:1535–1543. https://doi.org/10.1038/ismej.2012.4.
DOI: https://doi.org/10.2478/bgbl-2024-0008 | Journal eISSN: 2956-6851 | Journal ISSN: 0373-174X
Language: English
Page range: 83 - 92
Published on: Jun 16, 2024
Published by: The Medical Library named after S. Konopka in Warsaw
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Adrianna Bojarczuk, published by The Medical Library named after S. Konopka in Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 License.