References
- MurrayJ.D.:Dynamics of infectious Diseases: Epidemic Models and AIDS. W: Mathematical Biology. Berlin, 2002, s. 315-379.
- Chao, Dennis L., et al. “FluTE, a publicly available stochastic influenza epidemic simulation model.” PLoS computational biology 6.1 (2010).
- Meyers, Lauren. “Contact network epidemiology: Bond percolation applied to infectious disease prediction and control.” Bulletin of the American Mathematical Society 44.1 (2007): 63-86.
- Jiangzhuo Chen, Achla Marathe, Madhav Marathe, Coevolution of epidemics, social networks, and individual behavior: a case study, Proceedings of the Third international conference on Social Computing, Behavioral Modeling, and Prediction, p.218-227.
- Kermack WO, McKendrick AG (1927) A contribution to mathematical theory of epidemics. Proc R Soc Lond A 115(772):700–721.
- MollisonD.:Dependence of epidemic and population velocities on basic parameters, Math Biosc., 1991, nr 107, s. 255-287.
- ĐORĐEVIĆ, J.; PAPIĆ, I.; ŠUVAK, N. A two diffusion stochastic model for the spread of the new corona virus SARS-CoV-2. Chaos, Solitons & Fractals, 2021, 148: 110991.
- IshamV.:Stochastic models of epidemics, W: Celebrating Statistics: Papers in honour of sir David Cox on his 80th birthday, Londyn 2005.
- Mandal S., [et al.]: Mathematical models of malaria – a review, Malaria Journal, 2011, nr 202, s. 1-19.
- LI, Hui-Jia, et al. The dynamics of epidemic spreading on signed networks. Chaos, Solitons & Fractals, 2021, 151: 111294.
- Eubank, S., V. s. A. Kumar, M. Marathe, A. Srinivasan, and N. Wang. 2006. “Structure of social networks and their impact on epidemics.”. In Discrete Methods in Epidemiology, edited by G. Abello J, Cormode, Volume 70 of DIMACS Series in Discrete Mathematics.
- Keeling MJ. 2005c. Extensions to mass-action mixing. In: CuddingtonK, BeisnerBE, eds. Ecological paradigms lost. Routes of theory change. Amsterdam, the Netherlands: Elsevier, 107–142.
- Tian, Chunhua, 0002, Wei Ding, Cao, Rongzeng and Jiang, Shun. “Extensive Epidemic Spreading Model Based on Multi-agent System Framework..” Paper presented at the meeting of the International Conference on Computational Science (4), 2007.
- Hladish et al.: EpiFire: An open source C++ library and application for contact network epidemiology. BMC Bioinformatics 2012 13:76.
- Liu ZH, Lai YC, Ye N. 2003. Propagation and immunization of infection on general networks with both homogeneous and heterogeneous components. Physical Review E 67, 031911: 1–5.
- TAYLOR, Steven, et al. Worry, avoidance, and coping during the COVID-19 pandemic: A comprehensive network analysis. Journal of anxiety disorders, 2020, 76: 102327.
- Grabowski A, Kosiński RA. 2004. Epidemic spreading in a hierarchical social network. Physical Review E 70, 031908: 1–7.
- Zheng DF, Hui PM, Trimper S, Zheng B. 2005. Epidemics and dimensionality in hierarchical networks. Physica A 352: 659–668.
- Arif, Samiur and Olariu, Stephan. “Efficient solution of a stochastic SI epidemic system..” The Journal of Supercomputing 62, no. 3 (2012): 1385-1403.
- Eyler, John M. “The changing assessments of John Snow’s and William Farr’s cholera studies.” Sozial-und Präventivmedizin 46.4 (2001): 225-232.
- Li, Sheng, et al. “Dynamics and control of infections transmitted from person to person through the environment.” American journal of epidemiology 170.2 (2009): 257-265.
- Ginsberg, Jeremy, et al. “Detecting influenza epidemics using search engine query data.” Nature 457.7232 (2009): 1012-1014.
- Liu, Fan, et al. “Influenza Epidemics Detection Based on Google Search Queries.” Recent Progress in Data Engineering and Internet Technology. Springer Berlin Heidelberg, 2012. 371-376.
- Vuorinen V, Peltomaki M, Rost M, Alava MJ. 2004. Networks in metapopulation dynamics. European Physical Journal B 38: 261–268.
- Quax, Rick, David A. Bader, and Peter MA Sloot. “Simulating individual-based models of epidemics in hierarchical networks.” Computational Science–ICCS 2009. Springer Berlin Heidelberg, 2009. 725-734.
- Volz, Erik. “SIR dynamics in random networks with heterogeneous connectivity.” Journal of mathematical biology 56.3 (2008): 293-310.
- Newman, Mark EJ. “Spread of epidemic disease on networks.” Physical review E 66.1 (2002): 016128.
- Bansal, Shweta, Bryan T. Grenfell, and Lauren Ancel Meyers. “When individual behaviour matters: homogeneous and network models in epidemiology.” Journal of the Royal Society 4.16 (2007): 879-891.
- Lin, Junjing, M. Ludkovski. “Sequential Bayesian inference in hidden Markov stochastic kinetic models with application to detection and response to seasonal epidemics.” Statistics and Computing (2012): 1-16.
- Moore C, Newman MEJ. 2000. Epidemics and percolation in small-world networks. Physical Review E 61: 5678–5682.
- Colizza V, Barthélemy M, Barrat A, Vespignani A. Epidemic modeling in complex realities. C R Biologies 330: 364–374. 2007.
- Eubank, S., Guclu, H., Kumar, V.A., Marathe, M., Srinivasan, A., Toroczkai, Z., Wang, N.: Modeling disease outbreaks in realistic urban social networks. Nature 429, 180–184 (2004).
- Hanley, Brian. “Theoretical Biology and Medical Modelling.” Theoretical Biology and Medical Modelling 3 (2006): 32.
- TorbickiŁ.,Sieci społeczne w modelowaniu epidemii, Politechnika Warszawska, 2014, 48-56.